[image: image1.png]AmiBug.Com Test Ideas Summary Sheet


Testing Ideas
Explicit Requirements

Confirm written requirements are met

Implicit Requirements

Reuse from past similar projects

Compatibility

Platforms

Constraints

Quality Factors

Identify relevant factors

· Functionality 
· Reliability
· Usability 
· Efficiency 
· Maintainability 
· Portability 
Failure Modes

What can break?

Software

Hardware

Network

Third Party Objects

In House Objects

Old technology on new platforms

New technology on old platforms

Unintended use

Unintended target platform

New code

Changed code

Out of context code reuse

Unfamiliar code

New systems API usage

Popular defects from Bug Taxonomy

Changes in complexity

Defect patterns

Positive testing

One test case for each class of possible outcomes

Data Processing and Computations

One test for each Data flow path

White box analysis

Buffers, Queues, Stacks, Heaps, Cache Managers

Pointers at extreme

Pointers just above extreme

Pointers just below extreme

Memory overflow

Concurrent access by parallel threads

System resources, Forced error testing

Missing resources exception handling

Limited resources exception handling

Time out on delay for event handlers

Semaphores, resource contention, Mexican standoffs

Memory management

Disk management

Data communications resources

Interference with other processes

Bounds checker, Purify

Built for debugging, Compilers settings OK

Continuous Risk Assessment

(T) Technical likelihood of failure

(B) Business importance

Monitor changes in (T) and (B)

Base decisions on credible information

Spread effort across testing objectives

Application Logic Testing

Functions

Primary

Contributing

State model

One test case per state transition

One test case per path through all states

One test case to get to each state


Code flow

Line coverage

Branch Coverage

Path Coverage

Identify code that was not tested

Data

Partition into equivalence classes based

Input Type

Business Logic

Processing and Computations

Data Structures

Select sets of input for all fields from different classes

Choose three or more members from each class

Classes for Valid and Invalid data

Choose pairs of different invalid data

One test on exact boundary of each class

One test just above boundary of each class

One test just below boundary of each class

One test for each Data flow path

Test Data Sets

Real data

Simulated real data

Scrambled Secrecy and security

Old data

New data

Progressively changed, migration

Create

Update

Delete

Index

Nearly Full

Nearly Empty

Nearly Sorted

Unsorted

Vary caching

Combinations

Multiple Dependent Parameters


Test equivalence classes for each

All Pairs

Important Combinations

Mix error and valid classes

Confirm independence 

Challenge dependencies

Distributions


Model usage, Operational Profiles


Vary randomly


Bag of Colored Marbles

Random sample without repetition


Distribute proportional to target usage


RandBetween()

Test Environment Patterns


Vary environment during testing


Consider usage patterns

Consider technical risk


Create grid for each variable



Which platform to use when


Combine variables when practical


Example variables



OS Version



Locale



Browser Version



CPU Type



Available Memory



Available Disk space



Coresident Applications



Network Connectivity



Printer Type



Database State (Full, Empty)

Do not test everything

Is scope of testing clear, relevant and focused?

Could past bugs happen again?

What is benefit of testing?

What is consequence of testing?

What is benefit of not testing?

What is consequence of not testing?

Peer reviews

Double check test cases

Read through code changes

Begin with the end in mind

How do you know you are finished?

When can your work be used downstream?

It is all about people … and the occasional bug!

www.amibug.com


