
1

Acceptance Testing Case Study

Version 6.0

2

Table of Contents

I. Company/Software Early History………………………………………………………3

II. The Software…………………………………………………………………………...3

III. Business Model………………………………………………………………………..3

IV. The Task………………………………………………………………………………5

V. General Testing Strategy…………………………………………………………….....7

VI. Original Contract Negotiations………………………………………………………..7

VII. Requiem Acceptance Testing……………………………………………………….10

VIII. Revised Contract…………………………………………………………………...11

IX. Acceptance Testing Requirements…………………………………………………..12

X. Selecting a Partner for the Test Plan and Pre-Acceptance Testing………….………..14

XI. Test Plan Document………..………………………………………………………...15

XII. Pre-Final Run Acceptance Testing Workflow…………………………….………..16

XIII. Selecting a Partner for Final Acceptance Testing…………………………………18

XIV. Acceptance Testing Protocol………………………………………………………18

XV. Acceptance Testing and Results……………………………………………………19

3

I. Company/Software Early History

Greene Software Systems (GSS) was founded in 1997 as a privately owned

software company. Between 1997 and 2000, GSS became involved in several software

development areas, one of which was a security software package called SecNet.

II. The Software

SecNet’s client front-end was developed in C and C++. The back-end server

software used for billing and authentication of SecNet was developed using a

combination of Java, Perl, and C.

SecNet was the most important product made by GSS. The SecNet package

included anti-spyware software with a spyware scanner, real-time spyware protection,

and spyware cleanup. It also contained antivirus software, the most important component

of the software package, and firewall, parental control, and popup blocker software, as

well as a campaign manager (see: campaign manager). The antivirus software, anti-

spyware software, and parental control software were licensed from other software

suppliers. A major new version of SecNet was released two to three times each year; a

new version of the software was constantly in development. The version of the software

on the market in early 2004 was SecNet 4.2.

III. Business Model

The business model for SecNet was highly profitable for both GSS and the ISPs

to which it licensed its security software. Before 2004, GSS licensed SecNet to several

significant Canadian ISPs. SecNet was branded separately for each ISP licensing it (see:

4

branding). When SecNet was deployed for a new ISP or a major change occurred at a

current ISP customer, a development team from GSS worked with the ISP to take the

current release of SecNet and adapt it to the ISP’s requirements.

These ISPs then distributed SecNet to end users. This was done in several ways:

as part of a promotion of the ISP’s internet services, as part of the base cost of the ISP’s

internet services, or as part of a monthly subscription service on top of the end user’s

basic internet service fees owed to the ISP. The ISPs licensing SecNet were often

receiving an additional $5 CDN each month from each end user, a significant increase in

revenue for the ISPs.

The typical profile of an end user of SecNet was that of a non-technical personal

computer user. These users downloaded SecNet transparently from their respective ISPs

once they signed up for the security services; the software was then installed and

registered with the user’s ISP. GSS received updates from the suppliers of its software

and would only deploy them to end users’ PCs after validation and testing procedures

were performed. The users received software updates and virus definition updates from

GSS directly when such updates became available; this was part of the Service Level

Agreement (SLA) GSS had with each ISP (see: virus definitions, SLA).

The end users believed that they were dealing only with the ISP. They would call

their respective ISPs for technical support. SecNet was only one of several services the

ISP’s helpdesk supported. GSS offered training to each ISP’s support technicians, but had

its own helpdesk for issues that the ISP’s support staff was not qualified to manage. Such

issues were forwarded to SecNet’s support department as they arose.

5

IV. The Task

Robert Sabourin was hired on a consultant contract at GSS, and was given a broad

mandate to improve internal processes at GSS and to assist in preparing SecNet 5.0, the

version of SecNet that was to replace SecNet 4.2, for release. His project with GSS

started on January 1st, 2004, although he was in communication with GSS about the

project as early as September 2003. All of his consulting time for 2004 and a short

amount of time in 2005 were purchased by GSS, and he was given the position of

Director of Software Engineering Services. This involved working on software quality

assurance, software testing, software requirements, software workflow, and configuration

management (see: software workflow, configuration management). His main task was to

get SecNet 5.0 released to a large American ISP.

The Canadian ISPs that GSS had as its customers as of January 2004 were

telecom customers that had limited experience in reselling software. By a combination of

good fortune and a good business model, the Canadian ISPs were still able to make a

profit on the software, but their SLA agreements with GSS were naïve. Because of the

revenues involved and because the Canadian ISPs didn’t know better, problems that arose

with SecNet 4.2 and below were not considered major issues. These problems included a

release being deployed on an end user’s computer and causing serious harm to the user’s

PC environment. The end users who experienced damage to their PCs either had another

computer purchased for them by GSS or had their disks reformatted depending on the

severity of the problem encountered, but this way of dealing with severe issues was only

made fiscally possible by large profits and the relatively small size of the Canadian ISPs.

6

The American ISP that GSS was aggressively pursuing a contract with, Lepton,

was much larger than the Canadian ISPs that GSS currently had as its customers. Lepton

was not as trusting as its Canadian counterparts, and its agreement with GSS gave GSS

many more obligations.

Lepton stated that SecNet had to work with Lepton’s own software. If support

calls got too high, the SLA agreement between GSS and Lepton included penalties to be

exacted upon GSS. Any issues with the software would have to be resolved within

timeframes proscribed in the SLA depending on their severity level, as set out in a

severity scheme based on the amount of damage caused to users’ PCs and the number of

users affected. If the problem was not resolved in the prescribed timeframe, penalties

would result. Updates had to be deployed to many more users than GSS was used to, so

the availability of updates had to be increased. Finally, SecNet had to pass acceptance

testing, as specified in the contract with Lepton (see: acceptance testing).

There were a considerable number of compatibility bugs in SecNet 4.2 that

needed to be resolved in SecNet 5.0 before the software would pass acceptance testing. In

SecNet 4.2, patches had to be pushed frequently to resolve field-reported

incompatibilities with other products installed on end users’ computers. SecNet 4.2

interacted with a variety of low-level third-party drivers (see: third-party drivers). As

many of these conflicts as possible needed to be identified in testing and dealt with before

the software was deployed to the hundreds of thousands of end users subscribing to

Lepton.

Of the three quantities that must be balanced on a software project – time, quality,

and money – time and quality were the critical factors. Quality was a great concern to

7

GSS because GSS did not want to be fined by Lepton for support calls, and Lepton

wanted to deploy SecNet 5.0 by April or May 2004, so there was only a short time frame

in which to complete the testing project. The contract with Lepton was worth several

million dollars to GSS, so the budget was generous enough to allow the time and quality

goals to be met.

V. General Testing Strategy

The main goal of the project for SecNet 5.0 was to anticipate calls to Lepton’s

technical support and prevent penalties for breaching Lepton’s SLA. GSS wished to find

as many bugs that would trigger support calls as possible. A many-pronged testing

approach was used to ferret out different types of bugs in the software and to confirm that

SecNet would run normally on the average end user’s computer. The testing strategies

implemented included unit testing, system testing, acceptance testing, beta testing, and

combinations testing (see: unit testing, system testing, beta testing).

These tests were being created and conducted simultaneously. The unit testing

and system testing were done in-house; the acceptance testing and combinations testing

were outsourced. This case study is primarily concerned with acceptance testing.

VI. Original Contract Negotiations

The first contract GSS signed with Lepton covered two separate issues: the

licensing of the base product, SecNet 5.0, and the customization of SecNet 5.0 that

Lepton required before the product could be deployed to its users. This customization

included branding, the integration of the program with the billing software used by

8

Lepton, and making SecNet 5.0 compatible with other Lepton software end users’

computers.

The contract between GSS and Lepton for the use of SecNet 5.0 granted Lepton a

nonexclusive worldwide license to deploy SecNet 5.0 on its end users computers and to

profit from it. GSS was also obligated to provide Lepton with any updates or patches to

SecNet 5.0. Lepton was given the right to archive a reasonable number of copies of

SecNet 5.0 to use for recovery from any disaster that might occur. Lepton also agreed to

respect GSS’ trade secrets and to not knowingly permit any of Lepton’s employees to

reverse engineer SecNet or to otherwise acquire any information about SecNet’s source

code. The contract also included the Service Level Agreement.

The sections of the contract related to the customization agreement stated what

GSS’ and Lepton’s respective obligations were. GSS was obligated to customize API

interfaces and other parts of the program to brand the product specifically for Lepton, and

granted Lepton exclusive rights over its particular customization source code. Lepton also

gave GSS the rights to use Lepton’s trademarks for the purposes of the customization laid

out in the contract.

The initial contract signed at Lepton was negotiated unusually. Normally before

the delivery of a software product, acceptance testing is run on the product by either the

party receiving the software or an independent third party agreed to by the customer and

the supplier in order to ensure that there are no serious flaws in the program before its

release. Once acceptance testing is passed, the product supplier is paid for the product,

and the product is deployed. If a serious problem is discovered during acceptance testing

that precludes the product from being accepted by the customer, the supplier does not get

9

paid, so acceptance testing creates a significant incentive on the part of the software

supplier to ensure that the product conforms to mutually agreed-upon requirements. For

this reason, acceptance testing has become a standard contractual issue in the software

industry.

On Lepton’s side, the contract was negotiated by employees whose jobs were to

find new revenue streams. Lepton was engaged in a very serious search for new ways to

profit from its ISP business, so the employees negotiating the contract may have felt

pressured to get the contract signed quickly. While the team of negotiators at Lepton

understood the need for a strict SLA, they were not knowledgeable enough about

software business practices to realize the need for acceptance testing.

The GSS negotiators were inexperienced at dealing with such a high-profile

client. Because of the inexperience and haste on the part of the Lepton and GSS

negotiators, the contract was signed by both parties without acceptance testing being

specified as a condition for product acceptance by Lepton. This meant that GSS could

have submitted a product to Lepton that did not include all the functionality or polish

expected by Lepton while still fulfilling all of its contractual agreements so long as any

remaining bugs were fixed in accordance with the SLA.

After the contract was signed, the Lepton stakeholders changed as the project was

shifted into the control of another group. This group was more knowledgeable about the

terms and conditions of software contracts than the previous stakeholders had been, and

they were surprised to see that no acceptance testing had been placed into the contract.

These stakeholders at Lepton realized that even if GSS complied with the terms of the

SLA and repaired any bugs found in the field after deployment in the timeframe

10

specified, having large numbers of bugs when the product was deployed that would

otherwise have been caught in acceptance testing could damage Lepton’s reputation.

However, it is important to note that GSS was not attempting to take advantage of

Lepton by leaving acceptance testing out of the contract; GSS did not realize that it was

necessary. Nevertheless, the stakeholders at Lepton were unhappy with the contract, and

one decided to take action to force a renegotiation of the contract’s terms.

VII. Requiem Acceptance Testing

A stakeholder in the new group in control of the project at Lepton found a testing

lab called Requiem in January 2004 and hired Requiem to commence with acceptance

testing of SecNet.

Requiem did not have access to SecNet 5.0 because the testing was being done

without the permission or knowledge of GSS, so Requiem was instructed to perform

acceptance testing on SecNet 4.2, the version of SecNet that was deployed to the

Canadian ISP customers of GSS at the time, by signing up for an account with one of the

Canadian ISPs and obtaining the software. Requiem also did not have a copy of the

requirements and had no way of obtaining them without GSS’s knowledge. Since the

stakeholder at Lepton who had commissioned Requiem to test SecNet wanted the testing

done secretly, Requiem instead invented the requirements of SecNet, some of which had

nothing to do with SecNet’s intended functionality, and had stakeholders at Lepton sign

off on them, despite their inability to do so with any technical authority.

When Requiem performed the acceptance testing, it was done unprofessionally.

This secretive testing was accomplished using invented requirements with an old version

11

of the software that wasn’t even properly deployed, and for malicious reasons. The

stakeholder at Lepton who was responsible for the testing wanted to make SecNet look

like a poor piece of software because he was annoyed at the contract and the people at

Lepton who had signed it.

VIII. Revised Contract

After the completion of the unauthorized acceptance testing of SecNet 4.2

conducted by Requiem, the list of bugs contrived by Requiem was presented to

stakeholders at Lepton, and then to GSS. This was done at the behest of the Lepton

stakeholder involved for the purpose of frightening Lepton out of its business

arrangement with GSS by making SecNet look like a risky, poor-quality product.

This caused a significant amount of strife between Lepton and GSS, both on

Lepton’s side because of the perceived instability of SecNet and on GSS’s side because

of the unfairness and lack of ethics in the testing. GSS analyzed Requiem’s results and

found that the same bug was often listed multiple times on the bug list since Requiem did

not bother to identify multiple errors as the same bug. This made it appear as though

SecNet 4.2 had more bugs than it had in actuality. Furthermore, Requiem lacked the

software from the Canadian ISPs with which SecNet 4.2 was made to work; this

contributed to a number of errors, along with the inaccurate requirements (see: GSS

Analysis of Requiem Requirements).

The business proposal was jeopardized, but both sides agreed to a renegotiation of

some of the contract’s terms and conditions in order to satisfy Lepton. If GSS had not

agreed to the renegotiation, Lepton would have sued GSS for being in breach of contract,

12

and GSS would not have gotten the business. The new contract made Lepton pay less

money for SecNet, but gave Lepton a longer-term commitment to the product.

Acceptance testing was also included in the contract at this time.

IX. Creating a Requirements Document

Before the revised contract with Lepton could be signed, a list of requirements

that had to undergo acceptance testing needed to be signed off on by all parties.

When Mr. Sabourin began his contract with GSS, GSS did not have a full

requirements document. GSS had all of SecNet 5.0 well-specified, but the specifications

were a combination of requirements and design documents, not a complete requirements

specification. One of Mr. Sabourin’s tasks at GSS was to combine the information

presented in several different types of documents into a requirements document.

Over the course of two days, Mr. Sabourin and two others specified the

requirements of SecNet 5.0. The requirements document specified exactly what the

acceptance testing needed to test. Platform requirements stated which operating systems

SecNet 5.0 had to operate on (Windows 98 SE, ME, 2000, XP Home SP1, and XP Home

SP2) and which co-existent applications it had to be compatible with. Installation

requirements specified how the program was to be installed and that it had to notify users

of the presence of any redundant security software, such as McAfee and Norton.

Activation requirements gave the conditions under which the product was to be

activated and made available for use by an end user. Uninstallation requirements stated

that the program must come equipped with an uninstallation utility, and what the

13

uninstallation utility was required to uninstall. Performance requirements gave

performance benchmarks that SecNet had to meet.

Other requirements were created for specific parts of the application: the

antivirus, firewall, anti-spyware, popup blocker, privacy manager, and parental control

(see: 20040506 SecNet Requirements Draft).

One portion of SecNet that was not included in the acceptance testing

requirements and was not tested during acceptance testing was the branding of the

product to suit Lepton’s requirements. Branding, though required, was not one of

Lepton’s primary concerns with the product. However, even though it was not technically

part of acceptance testing, testing confirming the proper application of branding was

performed to add to confidence in the correctness of the product.

This testing was not something to outsource to a lab of specialized testers since it

required only generalized testing skills. Instead, a tester at GSS developed a long,

detailed test script to visually confirm all aspects of the branding. Because branding was

not of great importance to Lepton, this was all the confirmation GSS did for the branding.

Other projects can require acceptance testing of branding, but this one did not.

After GSS and Lepton agreed to the requirements for acceptance testing, only

minor changes to them were made. These changes were exclusively qualifications to the

existing requirements which became necessary as clarity issues between the requirements

and the program’s operation became evident. For example, if a requirement stated that a

dialog must appear after a particular user action and that action resulted in several dialogs

appearing, the dialog being referred to in the requirement would have been referred to

more specifically.

14

X. Selecting a Partner for Acceptance Testing

Before performing acceptance testing there were several tasks to be done. The

first was to create a working draft of the test plan document, with every acceptance

testing test case corresponding to one or more requirements to be verified. When this was

completed, it was then necessary to run these test cases to confirm that SecNet would

pass acceptance testing. The test case document, the requirements document, and the

testing were to be iterated over a period of several weeks until Mr. Sabourin and GSS

could be confident that SecNet would pass acceptance testing.

Mr. Sabourin did not go through a long, rigorous process to select a partner. He

considered two companies. One was ThreeBears, the testing company that had handled

the combinations testing of SecNet 5.0 very well, that was already very knowledgeable

about the product, and that Mr. Sabourin trusted because he was in values sync with the

ThreeBears test lead, Mr. John Bee (see: values sync).

The other was an offshore company which was confident that it could undercut

the bid of any of its competitors due to its low labor cost. Because of the offshore

company’s overconfidence, it ended up placing a bid for the project that was, in fact,

higher than ThreeBears’ bid. This was because it charged per person per week, even

though Mr. Sabourin did not require all the time the offshore company was offering, but

it refused to charge any other way.

Because Mr. Sabourin knew ThreeBears had the skills, availability, and values he

was looking for in a testing partner and because ThreeBears’ testing and documentation

15

services were competitively priced, Mr. Sabourin chose ThreeBears as the partner for the

acceptance testing project.

XI. Test Plan Document

To write and to iterate the test plan, Mr. Sabourin enlisted Mr. John Bee, the test

lead from ThreeBears who Mr. Sabourin had worked with closely during combinations

testing of SecNet 5.0 and who was the test lead of the acceptance testing of SecNet 5.0,

and Yvan Boulanger, an employee of Maxtest who was working on the test plan as an

independent consultant.

The main portion of the test plan was devoted to the test cases. Each test case

corresponded to one or more requirements, which were referenced in each test case

according to their identifiers in the requirements document. After the initial draft of the

test plan was made, updates to the overview and the test cases occurred on at least a

weekly, and sometimes a daily, basis. This included adding overview information, filling

in missing test cases, and modifying test cases added in previous versions of the test plan.

Whenever a test case could not be passed, and the reason for the test not passing was

determined to be the wording of a test case, the test case document was updated to make

the test case comply more accurately with the requirement or requirements it was meant

to test.

To ensure that only one current version of the test plan existed at any given time,

only one of the three people hired to work on the test plan could modify it at any given

time. This was accomplished through a method of passing an imaginary baton between

Mr. Sabourin, Mr. Bee, and Mr. Boulanger. Whenever one had the baton, he was the one

16

allowed to modify the document. When he was finished, he would pass the baton to

someone else, and that person would then be the only one allowed to make any changes

to the test plan. If anyone was unsure of who had the right to modify the document at any

given time, he would enquire through email as to who had the baton. If anyone else felt

that he had something to add to the document but did not have the baton, he would pass

on his comments to the person with the baton or wait until it was his turn (see: Final

Acceptance Test Plan).

XII. Pre-Final Run Acceptance Testing Workflow

Before the official acceptance testing agreed to by GSS and Lepton, it was

important for GSS to ensure that SecNet 5.0 would pass the acceptance tests so that GSS’

contractual obligations would be fulfilled. This meant that each acceptance test had to be

run and passed.

Most of the communication between GSS and ThreeBears during pre-acceptance

testing took place via email and pertained to the status of testing, what had and had not

yet been tested, and bugs or potential bugs. Status information was relayed regarding

which tests had been passed or failed and any ambiguities encountered during testing.

Since ThreeBears had done the combinations testing of SecNet 5.0 earlier in the

testing cycle, it already had ghosted images of platforms that could be used to run the

acceptance tests as well, so there were no overhead costs associated with setting up the

necessary platforms (see: ghosting).

When a bug was found on a platform by ThreeBears, the test lead made sure the

bug was well-reported. A well-reported bug included all the information the developers

17

would need to repeat the bug, such as system status information acquired through Dr.

Watson. The testers used a template to report the results of their testing from the second

week of testing onward (see: Sample Bug Report).

The primary line of communication was between Mr. Sabourin and the test lead,

Mr. Bee. They had phone calls scheduled daily and contacted each other at any time to

handle emergencies. Once a bug was confirmed and reported, it was added to an internal

bug database at ThreeBears on a TestTrack Pro database, a convenient internet-based

application that could be used anywhere in the ThreeBears lab. This database made bug

information available online to GSS in real-time as the bugs were reported. If more

information was required in triage or by the developers, the developers and testers

involved with the bug at GSS spoke directly to the tester at ThreeBears who had

discovered the bug.

Weekly status reports were made through a simple spreadsheet. These status

reports included the number and percentage of tests passed, failed, blocked, inconclusive,

and not run in any given week (see: blocked, inconclusive, Status Report Week 1, Status

Report Week 2, Status Report Week 3, Status Report Week 4, Status Report Week 5).

There were a number of reasons that any given test would not pass. The requirement on

which the test was based could be flawed, in which case the requirement would need to

be clarified and the test case rewritten; the test case could need clarification, in which

case only the test case would need to be modified; or there could be a bug in SecNet 5.0

that needed to be fixed. There were also weekly deliverables sent to GSS from

ThreeBears with all the bug reports made during the week.

18

The project manager at GSS needed to manage the relationship between GSS and

Lepton. He was very involved with the progress of the test development for the final run

of acceptance testing since it was on the critical path of the project and needed to be

completed before the final exchange of money for the product between GSS and Lepton

could be made (see: critical path).

XIII. Selecting a Partner for Final Acceptance Testing

Although ThreeBears had been chosen by GSS to perform pre-acceptance testing

to confirm that SecNet would pass acceptance testing, ThreeBears was not guaranteed the

contract for the final, official round of acceptance testing. The acceptance testing

company had to be agreed upon by both GSS and Lepton, as stated in the contract. GSS

suggested using ThreeBears, and Lepton agreed to have ThreeBears perform the

acceptance testing so long as its laboratory facilities passed an inspection by Lepton

employees. ThreeBears and GSS agreed to this condition.

Lepton evaluated ThreeBears’ testing site during the third week of pre-acceptance

testing. Lepton was primarily concerned with whether ThreeBears had the facilities to

perform all of the necessary tests; ThreeBears representatives showed Lepton’s

stakeholders around the site and explained their capabilities. Lepton was satisfied that

ThreeBears could do the acceptance testing, so ThreeBears obtained the contract for the

final run.

XIV. Acceptance Testing Protocol

19

The acceptance testing protocol document was created for the stakeholders and

quality assurance representatives from GSS and Lepton and was signed by both parties

before the final run of acceptance testing. Its original version was agreed upon prior to

ThreeBears being given the acceptance testing contract after Lepton’s inspection; it was

later modified to reflect ThreeBears’ involvement.

The protocol defined that each acceptance test case would explicitly match one or

more of the product’s requirements, and that ThreeBears would perform acceptance

testing at its testing laboratory. It also dictated conditions that ThreeBears’ laboratory had

to adhere to during acceptance testing, and the specifications of the triage meeting to take

place between Lepton and GSS after acceptance testing. Its appendices included an issue

log template the ThreeBears testers were required to use whenever an issue was found,

the test case template that all tests had to conform to, and agreed-upon scales for severity

and priority (see: Acceptance Testing Protocol). Any P1 bugs, those of highest priority,

had to be resolved before the initial deployment of the product, so Lepton would not

accept the product if any P1 bugs were found during acceptance testing.

XV. Acceptance Testing and Results

The final run of acceptance testing was completed over a period of two days in

May 2004 at ThreeBears’ testing facilities. Since all of the tests had been passed during

the fifth week of pre-acceptance testing, it was expected that all the tests would be passed

on the last round of acceptance testing as well. SecNet 5.0 did indeed pass each

acceptance test without exception (see: Acceptance Testing Final Summary).

20

The final conference with Lepton pertaining to acceptance testing was held soon

after. Lepton was very satisfied with the results of the acceptance testing and was

obligated by the results to accept the product.

