
Using Mind Maps for Software Design

November 2006 $9.95 www.StickyMinds.com

The Print Companion to

TO TELL THE TRUTH

Speak up to those
in power

GAME ON

What you can learn from
game developers

XMarks
the Test Case

30 BETTER SOFTWARE NOVEMBER 2006 www.StickyMinds.com

By Robert Sabourin

Using Mind Maps for Software Design

XMarks
theTestCase

Mind maps are a way to explore and document
ideas and their relationships in a simple
diagram. Important concepts are recorded
as words or pictures and connected with
lines indicating their relationships. While in
college, Tony Buzan developed mind maps
to save time in creating and reviewing notes
(see the StickyNotes for more information).
Later, he popularized mind maps through
lectures, books, and courses. Today mind
maps are used to improve memory, reading
skills, note taking, creativity, performance,
and brainstorming.

I first learned about mind maps from my
son Mark when he was in grade school.
Mark was taught how to use mind maps to
describe the plot, characters, theme, and
events of stories read in class. The first map
he showed me was for the children’s classic
Charlotte’s Web. I was quite impressed that a
simple drawing could meaningfully describe
so many concepts. I started to dabble with
mind maps to solve some of the software
engineering projects I had at the office.

You can create mind maps with just pencil
and paper, but a number of automated tools
are available (see the StickyNotes for links).
FreeMind is a widely available open source
tool that provides a quick entry into the
mind-mapping universe. I use FreeMind
when I teach testing to my undergraduate
software engineering students and to testing
professionals in the field. When I am designing
commercial test cases, I often use Mind
Manager from Mindjet. Mind Manager is
reasonably priced and allows me to develop
very complex mind maps that can be easily
integrated into other documents and shared
across other projects.

Mind mapping is a great technique to use
when you’ve run through the standard test
design approaches, but you’re still looking
for that “killer test case.” Mind maps help
generate great test ideas and get the creative
juices flowing. This article shows how I use
mind maps to help in three different test design
areas: equivalence classes (as part of domain
testing), usage scenarios, and quality factors.

www.StickyMinds.com NOVEMBER 2006 BETTER SOFTWARE 31

Mind Maps to Help Define
Equivalence Classes

One of the more common test case
design techniques I use is called equiva-
lence class partitioning. I learned this
technique in The Art of Software Testing
by Glenford Meyers. Today it is widely
taught as a key element of domain testing
(see the StickyNotes for some additional
resources).

An equivalence class is a set of tests
that test the same thing. All tests in an
equivalence class expose the same bugs.
Whenever I test an application, I use
equivalence classes to help choose what
data and conditions to exercise under
test. It provides good test coverage
while reducing the number of test cases.

I use mind maps to visually represent
equivalence classes so I can decide
where to focus my testing. Normally I
try to identify as many classes as I can,
and then, depending on how much effort
I choose to invest, I select the equiva-
lence classes that offer me the most
value as a tester.

I use a three-step approach to create
a mind map for an equivalence class:
• Identify the variables.
• Identify classes based on application

logic, input, and memory (AIM).
• Identify invalid classes.

Identify the variables
I create a mind map for each variable

under test. The variable is the center of
the mind map, and it is important that
we choose variables that are relevant to
what the application must accomplish.
In my mind map, I choose a variable
from all the possible things that could
or should influence the behavior of the
application I am testing. My tests will be
questions related to how the application
will behave given different values for
that variable.

A variable can be a parameter entered
by the user or a condition that may
influence the application under test. It
is important to note that variables can
be a combination of two or more
input fields, conditions, or states. For
example, a user filling out an insurance
application needs to enter the starting
and ending date of the claim period, so he
selects the date range by entering two

processed. “I” classes could be the
length of an input field based on
the number of characters allocated in a
form. For example, a form may have an
income value field that allows six char-
acters. So classes can be numbers that
are represented in six digits or fewer. If
we are restricted to integers, this gives a
range from 000000 to 999999. These
values are based on how the data is
entered, not how the data is processed. If
different numeric notations are allowed,
we can also have classes based on the
different notations (for example, with
or without numeric edit symbols such as
a thousands separator, decimal point, or
currency symbol). If the application
reads data from a file, the field formats
for the file will define a selection of
potential “I” classes.

On the Memory or “M” node, I place
equivalence classes based on the way data
is processed or stored in the program. To
identify “M” classes, you must have some
knowledge of how the software is being
written. When we base tests on the actual
source code or low-level design, we are
said to be doing white box testing. I often
consult developers, design documents, or
database schemas to identify “M” classes
for variables being tested.

Different “M” classes can be defined
based on the variable types from the data-
base schema. I have seen different variable
types used in the database and program
logic, and I encourage you to explore and
identify classes based on both.

parameters. Therefore, I can use the
variable “date range” in my test case
design rather than two different variables
for the starting and ending dates. Usually
parameters required in a group can be
combined, and the group of parameters
is a variable!

Identify classes based on AIM
The AIM model in Figure 1 is the

basic template I use to begin defining an
equivalence class mind map for a
variable. Note that I consider explicit
(documented) and implicit requirements
when identifying classes based on the
application logic.

I position the variable in the center
of the map, then I draw three branches
with end nodes labeled Application
Logic, Input, and Memory.

On the Application Logic or “A” node,
I place one branch for each class related to
the application’s expected behavior
based on business rules or processing
algorithms. If I were testing income tax
software and the variable in question was
the income level, then I would define at
least one application logic class for each
income level identified in the requirements.
In business applications, “A” classes are
those defined by ranges of values.

On the Input or “I” node, I place
equivalence classes based on the way
data is input. There are many ways data
can get to an application, and I use the
“I” class to focus on the ways the appli-
cation will deal with data before it is

32 BETTER SOFTWARE NOVEMBER 2006 www.StickyMinds.com

Figure 1:The AIM model

www.StickyMinds.com NOVEMBER 2006 BETTER SOFTWARE 33

Let’s examine a typical equivalence
class mind map (see Figure 2). This mind
map describes a set of equivalence classes
related to a user’s entering a claim amount
into a Web-based insurance application.

I chose the variable Claim Amount
as the center of the mind map. Branches
that radiate from Claim Amount break
down possible values based on AIM.

Classes defined in Application Logic
relate to ranges of values. Note that the
invalid classes Below Minimum and
Above Maximum are also included.

Input classes are defined in branches
of valid and invalid syntax. Under Valid
Syntax I have included data that is
entered with or without leading or trailing
spaces. Under Invalid Syntax I have
included classes based on different data
entered, codings from different locales,
long strings, control characters, literal
strings, and different numeric notations.
While I begin by listing as many possi-
bilities as I can, I may remove some later if
I feel the risk is low and the testing effort
isn’t justifiable.

Memory-related classes are included
for different representations of numeric
data coded as integers.

I can review the map with developers,
customers, and project team members
to make sure the handling of Claim
Amount is consistent with their expecta-
tions and any project requirements.

Figure 3 shows a mind map that

type, invalid syntax, and invalid length
of variables. An invalid type occurs
when a variable is expected to have one
type of data but a user enters an incorrect
type. A common example is a user typing
alphabetic text into a numeric field. An-
other situation is a user entering decimal
values into an integer input field.

Invalid syntax often occurs in pro-
cessing values such as date, time, and
money. For example, many possible
date formats exist depending on how
the day, month, and year are represented
and the order in which they are entered.
For example DD-MM-YY, MM-DD-YY,
and YY-MM-DD are three different
possibilities that could be used for a
date-input field. Depending on the
application under test, I may want to
choose at least one class of each possible
date format a user could enter.

Invalid length entries can trigger bugs,
such as buffer overflows and security risks.
I define invalid classes for string lengths
that are a bit too long, a lot too long, and
drastically too long. For example, what
would happen if an input field designed to

process up to eighty characters gets a string
of 100 million characters pasted into it?
Does the input process correctly identify
the invalid data, or does it attempt to
process it?

Mind Maps to Identify
Usage Scenarios

John Kennedy’s inspirational inaugural
address challenged Americans to “… ask
not what your country can do for
you …” but rather to “… ask what you

identifies equivalences related to a date
field. The “A” classes relate to whether
the date is in the past, present, or future.
The “I” classes relate to the syntax of
the date as entered by a user. No fields
related to “M” are included here.

Identify invalid classes
For each node of the mind map I often

create two branches, one for valid classes
and the other for invalid classes.

For application logic classes, I define
valid classes for ranges of values established
within the specifications of the business
requirements. I define invalid classes for
values outside the ranges established
within the business requirements.

For input classes, it’s valuable to
look at invalid classes based on invalid

Figure 2: Equivalence class mind map

Figure 3: Map identifying equivalences related to a date field

34 BETTER SOFTWARE NOVEMBER 2006 www.StickyMinds.com

can do for your country.” Usage scenarios
are a similar challenge to your software:
“Test not only what your application can
do for your user but also what your user
can do with your application.”

Usage-scenario test cases walk
through what a user will typically do with
the system from beginning to end and
exercise many different capabilities of an
application. Almost all the bugs I find
that interfere with typical usage scenarios
are high priority. When I am squeezed for
time, I focus on usage-scenario testing.

Mind maps help me identify the ways
in which the application under test helps
users achieve their goals. I first identify the
types of users, and then I identify three
different types of activities for each user—
normal work activities, crisis or extreme
activities, and infrequent activities.

Here is an example I use when I teach
test-case design: Imagine you are testing
the Wrap-O-Matic, a machine designed to
wrap chocolates. The machine takes an
input stream of chocolates and provides as
output beautifully wrapped and packaged
chocolates. If I want to make sure I tested
all possible usage scenarios, I would create
the mind map in Figure 4 to help guide my
test-case designs.

Note that for the Wrap-O-Matic I
have identified many different system
users. An operator makes sure the machine

and other important “-ilities.” I find it
instructive to use a mind map to explore
quality factors to determine whether
they are important and, if so, how to
test them. Often it is difficult to discover
what quality factors are important to our
clients. Mind maps can be an effective
tool to communicate with requirements
analysts, developers, and end-users to
identify important quality factors.

Figure 5 illustrates a mind map
developed to identify which characteristics
of usability should be tested for a specific
Web application. Usability is broken down
into three dimensions represented by
branches of the mind map: ease of use,
understandability, and engagibility. Further
definition of these characteristics is done
by building this map and discussing quality
factors with different project stakeholders.

Quality factors are among the most
challenging aspects of a software project
to test. The general approach for mapping
the testing of a quality factor is to identify
which factors are important and then
determine scale, meter, and the required
targets for each factor (see Figure 6).

is running, an auditor reviews reports
about the wrapping-production status, a
loader makes sure the Wrap-O-Matic has
all consumables and chocolates required,
an unloader takes wrapped chocolates
away, a health inspector makes sure
wrapped chocolates conform to the health
code, and a maintainer makes sure the
system is in tip-top shape.

Using this mind map to define usage
scenarios that could be tested, I would
choose which scenarios to test and which
to ignore based on the risk associated
with each one.

Mind Maps to Identify
Quality Factors

A quality factor is a characteristic of the
software project
which, if missing,
will lead to failure
or negative conse-
quences. Typical
quality factors are
usability, perform-
ance, scalability,
maintainabil i ty,

Figure 4:Wrap-O-Matic mind map

Figure 5: Mind map to identify important usability characteristics

You will see that
misunderstandings and
ambiguities are exposed
and resolved in real time

as you build the
mind map!

www.StickyMinds.com NOVEMBER 2006 BETTER SOFTWARE 35

Scale is the unit of measure I will use
to test the factor. Meter is the experiment
or method I will use to make the
measurement. Target is the actual goal
or expected result. In Figure 7 note that
for performance testing I have one scale
but three targets depending on the load
of the system being tested. I find the
maps are a useful way to review my
understanding of the system’s quality-
factor requirements. Then I can speak
with developers and requirement analysts
to make sure we are in sync.

Your Next Step
I suggest that you start using mind

maps in designing test cases based on
equivalence classes for important test
variables. Choose a variable that is
sufficiently complex (for example, one
related to potential system-security
breaches, such as user type including
users with different privileges). Draw a
map using the AIM model and then
brainstorm independently with developers,
users, and other testers. As you meet
with them, draw the map to document
information. You will see that misunder-
standings and ambiguities are exposed

and resolved in real time as you build the
mind map. Once you have perfected the
basic mind-mapping technique, apply it
to other areas such as identifying usage
scenarios and quality factors. {end}

Robert Sabourin has more than twenty
years of management experience leading
teams of software development profes-
sionals to consistently deliver projects
on time, on quality, and on budget. He
is an adjunct professor of software
engineering at McGill University and
has spoken at conferences around the
world, including the STAR conferences.
Robert has published many software
development and testing articles and is
the author of the popular children’s
book I am a Bug!, designed to teach
software testing to children.

Figure 6: Mapping the testing of a quality factor

Sticky
Notes

For more on the following topics, go to
www.StickyMinds.com/bettersoftware

� Tony Buzan and mind maps
� Mind-mapping tools
� More on equivalence classes

Benefits of
Mind Maps
Visual • Testers benefit from mind maps
because they provide an intuitive, visual
representation of part of the application
under test.

Communication • Mind maps assist in
communication between technical and
non-technical project stakeholders. By sitting
with others, a tester can build or modify mind
maps that describe important aspects of the
system. This collaboration can lead to a
more realistic and complete test design.

Creative • Mind maps encourage lateral
thinking. When drawing a mind map, ask
yourself “What if?” questions to determine
how the map could be changed. Mind-
mapping software allows for the easy
restructuring of the map while it is being
developed. Branches can be created, nodes
can be split, and new ideas can be added at
any time. Tools also allow for commenting,
annotations, and inclusion of additional
test, tables, or images.

Design Documentation • The mind
map can be used as an important and
reusable design artifact. Before detailing a
test script or exploratory testing charter,
create a mind map. Mind maps can be
reused to generate many different types
of tests or to select different test data for
existing tests, thus serving as the basis
for many different test cases.

Note Taking • In addition to describing
part of the application under test, mind
maps can be used by testers to organize
their notes, especially as part of exploratory
testing. While I am doing exploratory testing,
I often keep a mind-mapping tool running to
make visual notes of what I have discovered.
It’s easy to review mind maps with other
testers, developers, and project stakeholders.

A Word of Caution • Sometimes seem-
ingly simple mind maps can grow very
large! If the mind map is getting too big,
consider restructuring it by reorganizing
the branch structure or by creating more
than one map for the variable, scenario, or
quality factor you are exploring.

Figure 7: Quality factors mind map

