
Test & Measure

30 BETTER SOFTWARE NOVEMBER/DECEMBER 2004 www.stickyminds.com

WhatN

months 
worth of tests.

month 
to deliver.
Something
has to give.
When you
can’t possi-
bly test it 
all, what
do you do?

questions 
you need

THREE

to ask when deciding

WHAT DO YOU DO WHEN YOUR TESTING PROJECT IS SQUEEZED

for time? When code drops are late? When deadlines are advancing?

Do you play “if only” ? “If only we had automated more tests” or

“If only our tests were tougher, so that we didn’t have to run so many

to shake out the bugs.” The problem with the “if only” game is that

by the time you play it, it’s too late to make changes.

Do you faithfully follow the plan you already have in place and

then stop testing when the clock runs out? What if the tests you leave

undone are more valuable than the tests you run?

I recommend instead that you purposefully decide what not to

test. When project realities change, you just alter your plan accord-

ingly. To do that successfully, you have to plan in a way that supports

change, and you have to know how to change.

PLAN IN A WAY THAT SUPPORTS CHANGE
I always start with a list of great testing ideas that apply to the proj-

ect. A test idea is a description of a kind of test that needs to be run.

See Figure 1a (on page 32) for a sample list.

Let’s look at some of the fields in the tables. ID is just a reference

number. Source is the source of the test idea. There are many sources

for these testing ideas; some that I use regularly are shown in Figure 1b.

ONE

FIVE



www.stickyminds.com NOVEMBER/DECEMBER 2004 BETTER SOFTWARE 31

Not toTestBY ROBERT SABOURIN

Description briefly details each idea. Notice that the

ideas aren’t specific enough to be test procedures, but

they are specific enough that a tester easily could flesh

them out. We will invest in detailing an idea more

specifically if (and only if) we decide to use it. If we

defer or reject a testing idea, there is very little benefit

to further detailing or elaboration. Imagine the waste

of spending several days detailing a test procedure only

to decide not to implement the associated testing idea.

In testing, size matters—hence the field size. I con-

sider the size of a testing idea to be an estimate of the

reasonable amount of effort you would have to invest

to satisfactorily implement that idea given the state of

the software under test and the skills and competency

of the testing team. On a recent project we used a very

simple scale: small, medium, and large. Small is a test-

ing idea that takes less than ninety minutes to imple-

ment. Medium is a testing idea that takes a day to

implement, and large is a testing idea that takes about

a week to implement. These time scales assume an

experienced tester and software that is relatively bug-

free. If test ideas are larger than large, we split them or

otherwise reorganize them.

The final field summarizes an idea’s importance.

The bottom line is that a test idea is not important if

the bug it finds will not be fixed. For example, if we

decide not to fix spelling mistakes in final system test-

ing, then any test idea related to spell checking is unim-

portant. A testing idea is important when the informa-

tion it provides contributes to the decision to deploy or

ship the software. In a recent project, we used another

simple scale, high, medium, and low—where high

implied knowledge of the test passing was critical and

low implied a decision to ship or deploy the software

could be made without knowledge of the test result.

Anything in between was considered medium.

CAPTURE TESTING IDEAS
To fill in the table, the test lead should arrange a struc-

tured brainstorming session designed to capture testing

ideas. To help people stay focused and on track, it is a

good idea to have an experienced moderator run the  



meeting. Select participants from among
those people who will be working on
the project. Try to mix up roles. Include
some developers, testers, writers, GUI
designers, etc. (This session doesn’t have
to be the only source of testing ideas.
Whenever someone thinks of a new one,
it can be added to the list.) This group
of people might not be able to judge the
size and importance of testing ideas, but
the test lead can gather that information
from important project stakeholders. I
like to use a spreadsheet program to
help organize my testing ideas, but in-
dex cards, with one idea per card, work
just as well.

When it’s time to decide which tests
will not be run, make sure the stakehold-
ers participate. I find groups of three to
be best: a Product Manager, a Develop-
ment Lead, and a Test Lead. Remember,
deciding what not to test does not have
to be final. We can decide not to imple-
ment a testing idea based on the infor-
mation we have now, but if new infor-
mation comes our way in the future, we
can reconsider using the testing idea.
There are no wrong testing ideas. They
all have some value even if they are not
implemented.

KNOW HOW TO CHANGE
Your list of test ideas will help focus your
testing on those bugs that key project
stakeholders consider urgent. As the
schedule tightens, you can be sure you’re
not dropping what’s important. Even if
the schedule isn’t tightening, as you test,
you can triage testing ideas and decide
what to test and what not to test.

There are more questions to ask
about test ideas, questions whose an-
swers will help you make such deci-
sions. They fall into two broad cate-
gories: Is this the right test to run? Is
this the right test to run now? In several
of my recent projects with severe time
and budget constraints, we used five
specific questions:

1. Are ideas based on credible informa-
tion?

2. Is the system ready for this test idea?

3. Are there alternative test ideas that
could give the same value?

4. Can we combine this test idea with
others?

5. Can we choose subsets of this test
idea?

ARE IDEAS BASED 
ON CREDIBLE
INFORMATION?

I use testing ideas based on credible data
before I use ideas based on guesses or
intuition.

Before we embark on prioritizing a
testing idea, it is important to look at
the credibility of the source of the idea
and of our understanding of the size and
importance of it. On large Internet ap-
plications many testing ideas come from
assumptions of how users are going to
be using the systems. An example could
be browser types. How many users will
be using Internet Explorer, Netscape,
Opera, or other browsers when access-
ing the system? Generally, a value is

ONE

32 BETTER SOFTWARE NOVEMBER/DECEMBER 2004 www.stickyminds.com

Test & Measure

ID SOURCE DESCRIPTION SIZE IMPORTANCE

00100 REQ Test file download feature to all 
supported platforms

00200 REQ Test software installation on all 
supported platforms

00600 FM Test installation on systems without 
sufficient disk space available

00700 FM Test installation on nonsupported 
operating system

00800 FM Test software operation with 
insufficient system memory

01100 USAGE User migrates from recent version 
to new version of software

01200 USAGE User migrates from very old version 
to new version of software

01300 USAGE Typical usage scenario (A)

01600 QF Performance of transaction A on 
specific workstation (same or better 
than previous release)

1 Figure 1a: This table lists test ideas for a project. 

The abbreviations in the source column are spelled out

in a separate source table, as shown in Figure 1b. 3

TESTING IDEA SOURCE COMMENT

Requirements (REQ) What should the system do? What
capabilities should it have? What are
its performance criteria? Under what
constraints does it operate? (And so
on.)

Failure Modes (FM) What can break and fail? What
environment does the system run in?
What data can be wrong, missing, or
incorrectly structured? Does the system
have to synchronize with other systems
or events? Are there timing issues?

Usage Scenarios (USAGE) What do people do when they use the
system? How can we model
operational workflow? What other
systems and manual processes do they
use while using our system?

Quality Factors (QF) What characteristics must the system
possess to have quality? Performance,
usability, maintainability, scalability:
the usual suspects.



provided indicating either an expected
absolute value (we expect 10,000 users
to be using Opera) or a relative percent-
age (we expect 30 percent of the users to
be using Opera). Sometimes informa-
tion may look like it is verifiable factual
data when it is really a dressed-up wild
guess.

So how do you rate credibility? First,
gauge the credibility of any fact a test
idea is based upon. Next, assign a credi-
bility score—an example scale is 1 to 10,
where 10 represents absolute verifiable
fact and 1 represents a totally wild
guess. When the credibility score is too
low, get more information before priori-
tizing the testing idea. I find other
sources, look at past projects, or speak
to more peers. In the meantime, leave
the test idea out until the credibility of
source information is improved.

IS THE SYSTEM
READY FOR THIS 
TEST IDEA?

In some cases, a testing idea may be
ahead of its time. To paraphrase JFK:
Ask not (just) whether your test is ready
for the system but whether the system is
ready for your test.

A recent project I was testing involved
interaction between a Web server and
client device drivers being downloaded
and updated. Three testing cycles were
organized on different servers.

We found a lot of bugs on the first cy-
cle of testing. In the second cycle of test-
ing we expected to find fewer bugs—but
in fact we found many more bugs. A lot
of features worked well on the first cycle
but started to fail on the second cycle.

We investigated the problem and dis-
covered that the first cycle of testing
was useless. All of the server code need-
ed a rewrite to move to the preproduc-

tion servers! We had wasted our valu-
able testing time. During the first testing
cycle the client side may have been
ready to test—the server side was not
even close.

The moral of the story is that we
should have assessed the readiness of
the system for testing. We should have
skipped a lot of the tests—and done
them when the time was right.

ARE THERE
ALTERNATIVE TEST
IDEAS?

Testing provides a great deal of infor-
mation about the status of a software
system under development. Each testing
idea can provide some useful informa-
tion. But sometimes a testing idea pro-
vides information that we could assess
in other ways.

When triaging testing ideas, we
should ask ourselves these questions: Is
there any other way I can learn the same
information about the system? What al-
ternatives are available?

For example, you may want to con-
firm that the application prints reports
correctly on all supported printers. You
could develop a series of test cases,

which print reports on all the target
printers and then, to ensure correctness,
compare the printed reports to one an-
other or to a master.

Alternatively, you could implement a
test scenario that includes data entry, pro-
cessing, and report printing, varying the
printer for each test scenario. There is
some setup required to ensure the printers
are connected and configured correctly,
but in this case you mimic what a user
will typically do with a system—including
printing the report. If report printing fails
badly on a supported printer, the bug will
show up when running the scenario.

In this case, I would focus on the test
scenario rather than on creating a cus-
tomer test suite just for printers. Using
the test scenario would be faster and pro-
vide more information.

CAN WE COMBINE
THIS TEST IDEA WITH
OTHERS?

When triaging testing ideas, don’t reject
an idea outright; ask whether it can be
combined with another idea. Combining
two testing ideas may generate more val-
ue for a small increase in cost.

In the 1990s, as graphical user inter-
faces became more popular, test projects
began to include a GUI test plan. The
GUI test plan included a procedure to
systematically exercise all menus, but-
tons, and controls, as well as any graphi-
cal elements, mouse, or keyboard events.
GUI test plans were long and tedious,
but they certainly helped us find many
important GUI bugs.

Today, GUI technologies are better
integrated into development environ-
ments and operating systems. Fewer
GUI bugs are discovered during testing,
but they still happen and are important
to address. (They are especially com-
mon in Web-based technologies using
client side scripted technologies, such as
Flash or JavaScript.)

GUI testing can be combined with
functional testing if you teach all mem-
bers of the testing team to vary their
navigation techniques and to ensure
that certain common errors—identified
in some sort of common GUI-error
checklist—are not present. Some GUI
testing will then be done implicitly every
time a tester uses the GUI to perform
other functional tests.

CAN WE CHOOSE
SUBSETS OF THIS
TEST IDEA?

A testing idea may be too big. For ex-
ample, I worked on a project to upgrade
old versions of a system to a new ver-
sion. As one test idea, someone pro-
posed exhaustively testing all possible
combinations. The system had five op-

FIVE

FOUR

THREE

TWO

Test & Measure

Sometimes information may look 
like it is verifiable factual data when
it is really a dressed-up wild guess.
So how do you rate credibility?

www.stickyminds.com NOVEMBER/DECEMBER 2004 BETTER SOFTWARE 33



erating systems, seven software source
versions, two languages, two locales,
and two different installation options.
To try each case once would require 280
test cases (5 × 7 × 2 × 2 × 2). Each test
case would take more than half an hour

to run (assuming a pass), so even in an
ideal world, we were looking at 140
hours of testing.

As an alternative, a practical subset of
the upgrade test case was developed. In
the subset, certain test cases that added
less information or that exercised condi-
tions unlikely to occur were deleted. The
resulting test case required much less
time than the exhaustive test idea but
provided almost exactly the same mean-
ingful information.

It is even possible to dramatically im-
prove a testing idea by reducing the
scope or focus of it. In testing server
database applications that require mi-

gration from old structures to new
structures, you might see this testing
idea: Confirm that databases from all
previous supported versions can be mi-
grated to the current revision. This idea
sounds simple but is, in fact, quite

broad. It includes testing that a record
with a new field in the new revision can
migrate (What happens to the new
field?); testing the same thing for a re-
moved field; testing the same thing for a
field whose data type has changed; and
migrating one sample test database for
each supported version.

Analyzing what a testing idea really
entails allows you to make better deci-
sions about what to test and what to
leave out.

GET STARTED RIGHT
Now that you understand the process
for deciding what not to test, how can

you implement it? I recommend you be-
gin with a pilot project. In order to suc-
ceed, the expectations of all participants
must be in sync. Meet participants indi-
vidually to explain the purpose of the
project and the life of a testing idea. De-
tail how ideas are collected, sorted, eval-
uated, triaged, implemented, or rejected.
Make sure people know that not every
idea they mention will be tested. Make
sure key stakeholders know that you
cannot test everything (it is impossible),
but rather you want to focus the limited
testing budget on the most important as-
pects of the project.

I have applied testing idea triage to
several projects in different organizations
for more than ten years. When you first
try to introduce the concept of test idea
triage you may run into resistance from
other members of the testing team. You
must get buy in before trying to impose it
on key team players.

Some testers insist on having a com-
plete test plan before a project starts; a
complex change request management
system is needed to make the slightest
modification. These testers are likely to
resist any Agile approach. Are they on
the right team? Resolving their resis-
tance before implementing test idea
triage will save you a lot of grief. If you
cannot change the person’s attitude, you
may need to pick a different project and
convince the skeptics by demonstrating
success there.

During the project, baby steps should
be the order of the day. Implement test
idea collection and triage as a daily part
of the project work.

Deciding what to test—and what not
to test—can be done with a systematic
approach to collecting, evaluating, and
triaging testing ideas. My experience dic-
tates that it’s better to omit a test on pur-
pose than to skip it for no reason other
than “we ran out of time.” {end}

Robert Sabourin (rsabourin@amibug.
com) is an author, lecturer, and presi-
dent of AmiBug.Com, Inc., a firm spe-
cializing in software management con-
sulting, teaching, and professional
development. Robert is the author of
the popular children’s book I am a Bug,
which explains what SQA folks really
do at work.

Test & Measure

34 BETTER SOFTWARE NOVEMBER/DECEMBER 2004 www.stickyminds.com

Test Idea Triage
Test ideas are not static. As testing progresses, new ideas are discovered. As testers and de-

velopers start using the application from an end-user perspective, usage, scenario, and inter-

operation testing ideas are generated.

I urge you to set up periodic test triage meetings. These meetings can start as soon as the

testing is underway. Triage does not end until the project is completed.

Test idea triage is similar to bug triage or change control boards. I recommend using a

small group representing all important stakeholders. As a rule, the same folks who triage

bugs and requirements should also be triaging testing ideas.

In the test triage meeting, you will review benefit, size, and credibility of new testing

ideas relative to testing ideas already considered. Do we need more information about this

testing idea? How credible is the information available? Should the idea be used or not?

Should this new idea be combined with an existing idea? Should the new idea be split up?

My experience is that daily test idea triage meetings work well when run first thing in the

morning—as a sort of kickoff meeting for the day. Generally, I recommend bug and require-

ment triage in midafternoon.

When you first try to introduce 
the concept of test idea triage you 
may run into resistance from other
members of the testing team.



page 35
full-page ad

RadView


