
A Publication

VOLUME 3 • ISSUE 3 • MARCH 2006 • $8.95 www.stpmag.com

How a Custom Test Harness
Can Keep You on Track

Increase the Effectiveness of Your
Test Team With Quality Feedback

Five Compliance
And Security Tips
For Web Services

BEST
PRACTICES:

Change

Management

Discover What Really Affects Web
Application Performance

Winning Experiments
In Stress Testing
Winning Experiments
In Stress Testing

jttp://www.stpmag.com

http://www.ibm.com/middleware/tools

http://www.parasoft.com/stpmag

26950

Want to accelerate resolution
of Web performance problems?

You can with WebLOAD Analyzer—the only load testing tool

with root cause analysis for .NET and Microsoft Web applications.

WebLOAD Analyzer employs unique “black box” software to

capture actual problems at multiple synchronized levels, enabling

users to drill down to the individual component. By pinpointing

the root cause of all kinds of application problems,WebLOAD

Analyzer reduces problem resolution time by 60%—significantly

improving application performance and eliminating finger pointing

once and for all.

The Smart Choice in Web Application Testing© RadView Software, Limited.All rights reserved.

Eliminate the finger pointing with WebLOAD Analyzer™.
110100010110100010110 1 0 0 10 1 0 1 01 0 1 0 0 0 10110100101010110100010110100011101001010101011

110100010110100010110 1 0 0 10 1 0 1 01 0 1 0 0 0 1 01101

001010101101000101101 0 0 0 1 1 10 1 0 0 10 1 01 01011

Get a FREE “No more finger pointing” T-shirt. > > > > Learn more at www.radview.com/analyze

App Dev: “It must be a database problem.”

DBA: “I suspect it’s your application server
code that’s causing the problem.”

RAD-003-05_SWT 5/20/05 6:24 AM Page 1

http://www.radview.com/analyze

MARCH 2006

VOLUME 3 • ISSUE 3 • MARCH 2006

BZ Media LLC
7 High Street, Suite 407
Huntington, NY 11743
+1-631-421-4158
fax +1-631-421-4045
www.bzmedia.com
info@bzmedia.com

President
Ted Bahr
Executive Vice President
Alan Zeichick

Software Test & Performance (ISSN #1548-3460,
USPS #78) is published 12 times a year by BZ
Media LLC, 7 High Street, Suite 407, Huntington,
NY 11743. Periodicals privileges pending at
Huntington, NY and additional offices.

POSTMASTER: Send address changes to BZ Media,
7 High Street, Suite 407, Huntington, NY 11743. Ride
along is included.

©2006 BZ Media LLC. All rights reserved. Software
Test & Performance is a registered trademark of
BZ Media LLC.

Advertising Sales Manager
David Karp

+1-631-421-4158 x102
dkarp@bzmedia.com

Publisher
Ted Bahr
+1-631-421-4158 x101
ted@bzmedia.com

Editor
Lindsey Vereen
+1-415-412-4314
lvereen@bzmedia.com

Cover Photograph by Thomas Mounsey

Editorial Director
Alan Zeichick
alan@bzmedia.com

Senior Editor
Alex Handy
ahandy@bzmedia.com

Art Director
LuAnn T. Palazzo
lpalazzo@bzmedia.com

Art/Production Assistant
Erin Broadhurst
ebroadhurst@bzmedia.com

Managing Editor
Patricia Sarica
psarica@bzmedia.com

Contributing Editors
Scott Barber
sbarber@perftestplus.com

Esther Schindler
esther@bitranch.com

Contributing Writers
Aditya Dada
Ashwin Palaparthi
Jack Quinnell
Niel Robertson
Robert Sabourin
Prakash Sodhani

Director of Editorial
Operations
David Rubinstein
drubinstein@bzmedia.com

Special Projects Editor
George Walsh
gwalsh@bzmedia.com

Director of Events
Donna Esposito
+1-415-785-3419
desposito@bzmedia.com

Director of Circulation
Agnes Vanek
+1-631-421-4158 x111
avanek@bzmedia.com

Ad Traffic Manager
Phyllis Oakes
+1-631-421-4158 x115
poakes@bzmedia.com

Office Manager/
Marketing
Cathy Zimmermann
czimmermann@bzmedia.com

Customer Service/
Subscriptions
+1-847-763-9692
stpmag@halldata.com

Controller
Viena Isaray
visaray@bzmedia.com

Article Reprints
Lisa Abelson
Lisa Abelson & Co.
+1-516-379-7097
labelson@optonline.net

26950

Want to accelerate resolution
of Web performance problems?

You can with WebLOAD Analyzer—the only load testing tool

with root cause analysis for .NET and Microsoft Web applications.

WebLOAD Analyzer employs unique “black box” software to

capture actual problems at multiple synchronized levels, enabling

users to drill down to the individual component. By pinpointing

the root cause of all kinds of application problems,WebLOAD

Analyzer reduces problem resolution time by 60%—significantly

improving application performance and eliminating finger pointing

once and for all.

The Smart Choice in Web Application Testing© RadView Software, Limited.All rights reserved.

Eliminate the finger pointing with WebLOAD Analyzer™.
1101000101101000101101001010101010001011010010 1 0 1 0 1 1 0 10 0 0 1 0 1 10 100011101001010101011

110100010110100010110100101010101000101101

00101010110100010110100011101001010101011

Get a FREE “No more finger pointing” T-shirt. > > > > Learn more at www.radview.com/analyze

App Dev: “It must be a database problem.”

DBA: “I suspect it’s your application server
code that’s causing the problem.”

RAD-003-05_SWT 5/20/05 6:24 AM Page 1
Sometimes free beer is just
not enough. Once upon a
time there was a high-tech
company that held a party
every Friday afternoon and
provided free beer and
chips for all its employees. I
have to hand it to the com-
pany for at least making an
effort, but long hours cou-
pled with no profits to
share in and low job securi-
ty in this harried, perennial
start-up were too much to overcome,
and morale never rose very high despite
the beer. And I’m not sure sending
workers out to the parking lot with a
buzz on at the end of the day is such a
good idea anyway.

The gesture was a vain attempt to
make things seem less dreary than they
actually were, and it just didn’t work. It
did represent an understanding that
the morale of employees had an
impact on the productivity of the com-
pany. Quality depends to a great
extent on the productivity of the peo-
ple who are working to design and
manufacture a product and assure its
quality. I suspect that quality does not
thrive well in an environment like the
one depicted in David Mamet’s play
and film “Glengarry Glen Ross,” in
which salesmen are harassed and
intimidated toward achieving their
goals.

One of the reasons for implement-
ing automated processes is to take
human variability out of system manu-
facturing and test. I have read that
the quality of an automobile once
depended upon the day of its manu-
facture. Automobiles built on Fridays,
as I recall, had a greater likelihood of
being lemons than those coming off
the assembly line on other days. As

long as people are in-
volved, quality is likely to
vary. You can see that
variability in athletic and
musical performances as
well as virtually every other
human enterprise.

Companies propagate
slogans such as “Quality
is everybody’s job” that
sound like feel-good state-
ments and may or may not
mean anything at a partic-

ular company, but in a successful
enterprise, quality is indeed everyone’s
business. And quality depends to some
extent on such things as working rela-
tionships with managers and co-
workers, fatigue, stress and ergonom-
ics. Personal relationships with co-
workers can also be a factor: hence the
admonition against “fishing off the
company pier.”

You cannot underestimate the
importance of the human factor in the
quality equation. You probably wouldn’t
want to lie under the scalpel of a
disgruntled brain surgeon or fly across
the Atlantic with a flight crew mad at
their boss.

In human relations oftentimes it is
not what is done but how it is done.
Companies have budgets to meet and
stockholders to answer to, and workers
may have issues independent of their
jobs. But for the most part, everyone is
rowing in the same direction; the ques-
tion is, how best to facilitate the process.

Mutual respect goes a long way
toward that end. In this issue Prakash
Sodhani describes how the way person-
nel reviews are conducted can help
boost the effectiveness of the QA team.
It’s just one way to improve product
quality, and it’s a better approach than
handing out free beer. ý

The Human
Factor in The
Quality Equation

A MESSAGE FROM THE EDITOR

Lindsey Vereen
Editor
www.stpmag.com • 5

http://www.stpmag.com
http://www.bpaww.com
http://www.bzmedia.com
http://www.bzmedia.com

http://www.seapine.com/st&p

MARCH 2006 www.stpmag.com • 7

CCoonntteennttss A Publication

VOLUME 3 • ISSUE 3 • MARCH 2006

1144CCOOVVEERR SSTTOORRYY
You Don’t Have to Be Mad
To Experiment With Stress Testing

Setting up a lab can give you peace of mind. You’ll be able to predict
behavior, isolate bugs and compare what-if scenarios. By Robert Sabourin

DDeeppaarrttmmeennttss
5 • Editorial
Calculating the human factor in the
quality equation.

9 • Out of the Box
New products for developers and
testers. Compiled by Alex Handy

11 • Peak Performance
The shoulds and shouldn’ts of
software testing. By Scott Barber

36 • Best Practices
There’s gold in your own hills—and
you can find it. By Esther Schindler

38 • Future Test
The changing face of software test
teams. By Niel Robertson

2244 Hot Tips For
Making Web Services
Compliant and Secure
Growing regulatory pressure and
the migration to SOAs present new
challenges to developers and testers.
Here are five things you should know.

By Jack Quinnell

Product quality depends on a variety
of factors, including the quality of the
QA team. Here are some guidelines to
make staff reviews more productive and
successful. By Prakash Sodhani

3333
Try a Tiered
Approach
Toss a life preserver
to your QA team
with this automation
framework model.

By Aditya Dada

2200Hitch a Harness
To Your Next Project

Many development shops are writing
custom test harnesses to rein in
complex test flows and plow through
their functional testing.

2299 QA
Reviews:
What Goes
Around...

© Copyright 2006 Instantiations, Inc. CodePro AnalytiX and CodePro are trademarks of Instantiations.
All other trademarks mentioned are the property of their respective owners.

Key Features of CodePro AnalytiX™

CodePro AnalytiX™

for Eclipse, Rational® and WebSphere®

Drive out quality problems earlier
in the development process.
Powerful code audits and metrics make
every developer a Java expert.

Create tight, maintainable systems.
Wizards generate unit and regression tests,
and analyze testing code coverage.

Enforce quality measures across teams.
Define, distribute, and enforce corporate coding
standards and quality measures, across individuals
and teams… no matter where they’re located.

Spend less time and money to develop
high-performance Java systems.
Dramatically improve your application
development process and code quality…
leading to more reliable, maintainable systems.

Detect & correct code quality issues... automatically

Define, distribute & enforce quality
standards across development teams

800+ audit rules and metrics,
350+ Quick Fixes

Powerful management reporting

Code metrics with drilldown & triggers

Audit Java, JSP and XML files

JUnit test case generation

Code coverage analysis of test cases

Dependency analysis & reporting

Integrated team collaboration

Javadoc analysis & repair

Seamless integration with Eclipse,
Rational® and WebSphere® Studio

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

CodePro AnalytiX™ is developed by the experts who brought you the popular book
Eclipse: Building Commercial Quality Plugins — Eric Clayberg & Dan Rubel

www.instantiations.com 1-800-808-3737www.instantiations.com 1-800-808-3737

the development tools experts

No one outside of IBM has more experience
creating Eclipse-based Java development tools

http://www.instantiations.com/codepro

NetBeans Profiler is a newly created pro-
filing tool for use within the NetBeans
Java IDE. Sun Microsystems said that it
created the profiler to address a num-
ber of issues that crop up during pro-
filing, such as speed loss, information
overload and complexity.

NetBeans Profiler is optimized to tack-
le a number of preset profiling tasks. Gregg
Sporar, a technology evangelist at Sun,
said, “Java profiling tools introduce too
much overhead. As you introduce that over-
head, you slow down the application. You
might get into a situation where you can’t
even use specific profiling tools because
the overhead they introduce makes them
unusable. The second issue is the inabili-
ty to do an appropriate level of filtering.
You end up with an overflow of informa-
tion. If I am trying to find a particular prob-
lem with memory allocations, I don’t want
this tidal wave of info on every thread.”

NetBeans Profiler works within the
recently released NetBeans 5.0 IDE and is
available now from Sun’s Developer
Network Web site (developers.sun.com).

Perforce 2005.2 Enables Off line Coding

OOuutt ooff tthhee BBooxx
Compiled by Alex Handy

Emulation is often associated with old
hardware. The ability to run software
under emulation has been around for
years. Apple’s Intel-to-PowerPC software
Rosetta is one common example. But
when it comes to emulating a network,
the waters have been murky—that is,
until Shunra Software (www.shunra

.com) decided to offer its Virtual
Enterprise network emulation software.
The company released version 4.0 of this
software in February, and the tools includ-
ed with the suite should make testing SOA
deployments, network services and high

bandwidth software much easier.
Shunra Virtual Enterprise version 4.0

includes a number of tools that help
testers get a better handle on how their
applications will behave under stress.
The VE Profiler gives testers the power
to automate their network application
tests, and can be ratcheted up to push

software to its absolute limits. To
measure just how much all this
stress is affecting the end user,
Shunra also includes the VE
Predictor, which gives testers a
firsthand view of just how the
tested application will behave
when it reaches the end user.

And to make all the infor-
mation gleaned that much more
legible, version 4.0 of the Shunra
Virtual Enterprise software
includes a new reporting center.
Here, users can correlate and
compare data from the myriad
tests available. You also can use
the reporting center to get access

to the information that will eventually
make its way into the 8x10 color glossy
images of charts and bar graphs that
make management so happy.

Shunra Virtual Enterprise is available
now for US$70,000.

Shunra VE 4.0 emulates a network environment for
accelerated testing.

Shunra VE 4.0 Lets Testers
Push Apps to Their Limits

NetBeans
Profiler
Adds Swift
Profiling

The content and source code manage-
ment and control suite from Perforce
Software (www.perforce.com) is typi-
cally updated twice per year. The
Alameda, Calif.-based company was
slightly late in releasing its second
update of 2005, however, and it arrived
shortly after the new year.

Perforce has a reputation for re-
markably solid release builds, and
2005.2 is no different.

Featured in this release are external
authentication triggers, server improve-
ments and more. New to this edition
is the ability to code offline, and then
later upload additions to the central

Perforce server.
Integration with Eclipse, the

popular open-source IDE, has
also been added this time
around.

With the addition of offline
coding, it was also necessary
to add file and folder diff
capabilities. These can be
taken advantage of by just
about anyone in the coding
world—whether they use Mac,
Windows, Linux or BSD.

This new version of Per-
force is a free upgrade for sub-
scribers.

Perforce allows users to leave the office to work on their
code and upload additions to the server later.
MARCH 2006 www.stpmag.com • 9

http://www.shunra.com
http://developers.sun.com
http://www.perforce.com

Security testing tools are essen-
tial for Web applications, but
it’s gotten quite difficult to
automate Web testing without
the help of more robust QA
tools. SPI Dynamics (www
.spidynamics.com) has heard
the cries of weary testers, and
has released version 5.8 of
WebInspect.

The tool offers support for
automated security assessments
of Web applications that use
AJAX (Asynchronous JavaScript
and XML) software development
technology, according to the company. Erik
Peterson, vice president of product man-
agement, said that “AJAX represents the
future of Web application technology. SPI
Dynamics says that by the end of 2006, 30
percent of all Web applications will be
AJAX-based. Applications like Google Maps
represent a new challenge for Web appli-
cation professionals who have to ensure
their security. It’s a new technology that
presents new security concepts.”

WebInspect 5.8 wasn’t the only thing

SPI Dynamics offered in January. The
company also announced its scalable Web
application testing platform, Amp 2.0.
The tool is said to allow security testers to
expand, scale and make remotely admin-
istrable Web tests created with Web-
Inspect. The tool also is available now,
though the concept of a remotely acces-
sible security tester is somewhat antithet-
ical to proper security practices.

WebInspect 5.8 is available now starting
at US$6,000, while Amp 2.0 starts at $60,000.

Send product announcements to
stpnews@bzmedia.com

WebInspect offers a comprehensive tool set for testing
AJAX applications.

JUnit 4 Rolls Out Several
High-Profile Improvements

SPI Dynamics Offers AJAX
Tester

After almost three years of silence, a new
version of JUnit (www.junit.org) has finally
surfaced for the unit-testing masses to enjoy.
And what a triplet of years it’s been for Java.
With Java 5 now running around the world,
JUnit has had to play a bit of catch-up to
take advantage of all those new capabilities,
such as annotations, generics and variable
length argument lists.

Since unit testing is a developer-centric
testing method, you may find yourself hav-
ing to play evangelist around the office to
get your programmers to pick up their end
of the bargain here. But with JUnit 4 in hand,
that should be somewhat easier, thanks to
the new additions to this indispensable tool.

First off, your old tests should function

perfectly within this new version. The JUnit
staff made certain to let everyone know that
99 percent of old tests should be compat-
ible with this new version.

Also new to version 4 is the ability to set
up and tear down tasks immediately before
or after an operation. Thus, coders can ref-
erence a database connection before tests
begin, and tear it down after all tests are fin-
ished. This should save time and resources
for developers using expensive resources.

There are a number of other high-pro-
file improvements to JUnit 4 as well.
Examples of the improvements include
exception testing, the ability to ignore tests
with a new @ignore annotation, and
improved timed testing.

DevPartner SecurityChecker 2.0 was
released by Compuware (www.compuware
.com) just before the end of January.
This new iteration of the Web application
vulnerability scanner includes a host of
audits to find holes before they’re exploit-
ed by malicious hackers.

The Web makes application security a
much more complex issue for enterprises.
Thanks to hacking Web sites hosted around
the globe, one simple hole in your Web
application can be taken advantage of
by hundreds, even thousands, of unskilled
mouse-based warriors. One particular
site, known as Google Dorks (johnny
.ihackstuff.com) lists hundreds of ex-
ploitable and vulnerable Web pages, with
more added every day. The gist of this
particular site is that security holes can
be easily found by plugging magic phrases
and snippets into Google.

But Compuware’s DevPartner Security-
Checker 2.0 is designed to help prevent
these types of problems from plaguing
your Web applications. The tool integrates
with Visual Studio 2005 to ensure that
ASP.NET applications are quickly and
effectively checked for security during
development.

DevPartner SecurityChecker 2.0 is capa-
ble of finding pages within an ASP.NET
application that could be vulnerable to
Google hacking. That means it keeps an
eye out for pages that contain too much
information, illegal actions, faulty permis-
sions, password listings and other data that
shouldn’t fall into the hands of hackers.

In addition, Compuware’s updated tool
is capable of finding cross-site scripting
vulnerabilities and cookie flaws that could
give users access to areas of a site in which
they don’t belong.

DevPartner SecurityChecker 2.0 is
available now for US$12,000 per con-
current user. Volume discounts also are
available.

Compuware
Updates
Security Tool
10 • Software Test & Performance MARCH 2006

http://www.junit.org
http://www.spidynamics.com
http://www.compuware.com
http://johnny.ihackstuff.com
mailto:stpnews@bzmedia.com

Lately I’ve become rather
fond of saying that should
and shouldn’t are the two
most frightening words a
software tester hears while
testing. They probably
aren’t far down the list of
words that frighten man-
agers during status up-
dates either.

Consider this example.
While doing some per-
formance testing for a bank, I noticed
what looked like a fascinating pattern
in the results with respect to response
times. After applying some statistically
flimsy grouping (by rounding the
response times of the measured
objects down to the nearest whole sec-
ond), I confirmed that the pattern
was, in fact, quite fascinating.

Reasonable Consistency
Response time results generally follow
one of just a few patterns. An individ-
ual transaction will typically display
response times that are reasonably
consistent throughout the test, that
increase linearly or geometrically
throughout the test, or that increase
during peak volumes and return to
low-volume response times as the
volume decreases. Pretty much any
other response time pattern for a
particular transaction is a good indica-
tion that something worth investi-
gating further is going on. In this
case, the response times seemed to
oscillate unpredictably in four-second
increments.

As I investigated further, I found
several items worthy of note.

First, more than a third of the meas-
ured objects returned in less than four

seconds. As it turned out,
these objects were all
graphics, style sheets and
plain HTML (text) ob-
jects. Second, the majority
of the remaining objects
displayed response times
of four seconds—with a
few just over five seconds.
Third, all of the objects
returning in four or more
seconds contained data

that they retrieved from a remote,
hosted database. Last of all, every one
of these remaining objects returned in
“four-and-a-little” seconds, “eight-and-
a-little” seconds and so on.

Pinpointing the Problem
As I explained this behavior to the
team (after defending my test, test
tool, analysis and competence), the
developers finally agreed to instru-
ment their code and systems to time
stamp each transaction as it entered
and departed their areas of responsi-
bility. Running the test again, all of
them were happy to report that their
code/system was responding in a quar-
ter of a second or less—all except the
middleware developer. He reported
that the requests were spending under
a tenth of a second in the middleware,
but that the time difference between
the outbound requests to the remote
database and the responses was, in
fact, showing the same four-second
step pattern.

The overwhelming reaction to
those findings by the managers and
developers was, “Oh, it must be the
database”—not surprising since the
main reason for the project in the first
place was to ultimately replace the out-

sourced database. I wasn’t as immedi-
ately convinced, however, and asked,
“Are we sure it’s not something in
the network? The database is two fire-
walls, probably upward toward a dozen
switches, hubs and proxies, and over
a thousand miles away.” Once the team
finished gawking at me and softly
chuckling to one another, their
response was, “That shouldn’t be the
problem; we’ve never had trouble with
the network before.”

It took us three weeks to verify con-
clusively that the database was not the
problem, two more weeks to convince
the network administrators to trace
the packets, one hour to conduct the
test, 15 minutes to analyze the results,
and less than five minutes to fix the
offending setting on the recently
upgraded network appliance. So, basi-
cally, the word shouldn’t cost the proj-
ect five weeks.

Of course, the hardest part for me
was biting back the urge to say, “I told
you so!”

Sage Advice
In his book “More Secrets of Con-
sulting: the Consultant’s Tool Kit”
(Dorset House Publishing, 2001),
Jerry Weinberg offers memorable rules
and principles based on his years of
experience in the software industry.

For those of you who may not be
aware, Weinberg has authored and co-
authored more books than I care to
count—virtually all related to his 40
years of experience in the software
industry.

While it is true that many of his les-
sons come from the point of view of
a consultant, every one of his books
holds valuable information that is
applicable to anyone in the software
industry (and most any other industry
for that matter). So don’t think
that his work is interesting only to con-
sultants. Weinberg’s books and his
lessons that others have shared with
me have had, and continue to have, a

The Shoulds And
Shouldn’ts Of
Software Testing

Scott Barber

PPeeaakk PPeerrffoorrmmaannccee

Scott Barber is the CTO at PerfTestPlus.
His specialty is context-driven performance
testing and analysis for distributed multi-
user systems. Contact him at sbarber
@perftestplus.com.
MARCH 2006 www.stpmag.com • 11

mailto:sbarber@perftest.com

significant influence on how I
approach software testing, my writing
and my values and principles as a con-
sultant. If you’ve never read any of his
work, I highly recommend it.

If only Weinberg had gotten this
book out a year sooner, and we had
read and paid attention to Chapter 3,
we might have avoided our five-week
delay.

The first three key points in
Chapter 3 are: “If they’re absolutely sure
it’s not there, it’s probably there,”
“Don’t bother looking where everyone
is pointing,” and “Whenever you
believe that a subject has nothing for
you, it probably has something for
you.”

A mere two pages later, Weinberg
introduces a concept he calls “lullaby
words” that he summarizes this way:

“Later, I reflected on the deeper
lesson underlying our discovery of all
these lullaby words. In effect, the
words discourage feedback by putting
both the speaker’s and the listener’s
mind to sleep. When feedback is dis-
couraged, the meaning of a statement
cannot be clarified. If it’s not clarified,
the statement can mean almost any-
thing—and that’s always the begin-
ning of trouble. If you want to avoid
such trouble, start converting those
lullaby words to alarm words—words
that wake you up to potential misun-
derstanding, rather than lulling you to
sleep. Just do it!”

I’m guessing that you won’t be sur-
prised that Weinberg includes should
as one of his lullaby words; the other
six are just, soon, very, only, anything
and all. While Weinberg’s insights are
both brilliant and useful (as usual), I
have to say that I think Weinberg
missed a valuable opportunity to write
about why people use these lullaby
words—or maybe Weinberg and I
just have had some very different
clients. What I have seen are members
of the client’s team who use lullaby
words very intentionally as a method
of all but begging the tester (or con-
sultant) not to look too hard in a par-
ticular place.

It’s a sad but true fact that team
members often try to keep the testers
off their turf and thus keep them from

finding problems that will put their
team under the microscope.

Sometimes this effort is an act of
self-preservation brought on by organi-
zations or managers who are particular-
ly harsh when critical defects are traced
back to an individual; sometimes it’s a
side effect of nontechnical testers try-
ing to tell developers how to do their
jobs; and other times it’s simply organi-
zational politics.

In this case, politics is exactly what
led to a five-week delay that was kicked
off by the use of the word shouldn’t. I
later found out, months after phase 1
(and my official involvement with the
project) was completed and in pro-
duction, that there had been a long
history of contention between the
development teams and the infrastruc-
ture teams in this organization, allow-
ing the development teams to basical-
ly dictate tasks to the infrastructure
team and blame them for any number
of defects.

Making matters worse, a few
months before I came on board, a new
executive vice president who, among

other things, made it exceptionally
difficult for the development teams
to get unscheduled assistance, was
placed in charge of the infrastructure
team. By all reports, many of the
real and perceived infrastructure
issues went away very shortly after
the change in management, but the
balance of power had taken a 180-
degree turn.

The gawks, chuckles and “shouldn’t”
that I received when I asked about the
network actually meant, “We really
hope it’s the database because we don’t
want to fight with the infrastructure
team again...especially after they
assured us that the network wouldn’t
be an issue for this project.” Now, if
only someone had told me that from
the beginning, we could have created a
fairly simple test to prove that the
problem was between the middleware
and the database, as opposed to spend-
ing weeks designing, creating, schedul-
ing, executing and analyzing a test to
prove the problem was the database,
which would have quickly implicated
the network by default.

In this particular case, at least, it was
much easier to disprove the database
theory of poor performance than to
prove it.

All in all, after the network fix, the
remainder of the performance testing
effort went well, and last I heard, the
application was still performing well.

Look Where You Least Expect
But that isn’t the big lesson. The big
lesson that I’ve had to relearn time
and time again since this project,
which is the first encounter I had with
lullaby words that I can recall, was that
no matter the reason behind the use
of should or shouldn’t, as a tester, there
is only one single response that makes
sense every time: “I understand that
shouldn’t be the problem, but let’s test
it really quickly just to make sure. If
nothing else, it’s worth being able to
document the test and conclusively
rule it out.”

So now whenever someone says,
“This shouldn’t be the problem” or
“This should work,” what I hear is:
“Make sure this is something you don’t
forget to test.” ý

•
‘Whenever

you believe that a

subject has nothing

for you, it probably

has something

for you.’

•

12 • Software Test & Performance MARCH 2006

http://www.segue.com/lh?sorry

a complete system collapse during a
live interactive exam. Luckily, a couple
of astute technicians were able to
install a fresh server and get the exam
restarted within a “reasonable” delay of
about two hours. But the damage was
done. Why had the server failed when a
couple of dozen applicants started
using the system within a few millisec-
onds of one another?

Looking at the details, we found
that 14 concurrent examination re-
quests within a 20-millisecond window
threw a wrench at the server, consum-
ing more resources than were available
and triggering a series of software fail-
ures because of inadequate failover or
recovery software.

Somehow testing overlooked this
eventuality. Even though load had been
tested, some very important scenarios,
such as varying the arrival patterns of
transactions, were not considered.

What can we do to avoid such disas-
ters? Who are you going to call? What

You Don’t Have to Be
Mad to Experiment

A Stress Testing

Lab Can Bring You

Peace of Mind

P
ho

to
gr

ap
h

by
 M

aa
rt

je
 v

an
 C

as
pe

l
By Robert Sabourin

A major educational ev-
aluation service pro-

vider had just experienced
the worst possible problem–

MARCH 2006 www.stpmag.com • 15

are you going to do? Stress testing of
multitiered Web applications can be
an expensive and time-consuming
activity. Organizing stress-testing envi-
ronments into three decoupled
dimensions helps focus and organize
projects effectively.

For the uninitiated, stress testing
means observing the operational char-
acteristics of the system in a harshly
constrained environment. Whatever
constrains the environment harshly is
applying a stress to it. The operational
characteristics being observed can
vary. We could be looking at how the
system performs, what the throughput
of the system is, or what the response
time of the system is to certain trans-
actions. We could be looking at char-
acteristics of the system, how it con-
sumes resources, how much memory
the system is using, how much CPU
capacity the system is using or how
much network bandwidth the system is
using. We can also look at things like
how many bugs there are in the system
and whether there are failures in exe-
cuting tasks or functions. We can
observe how basic system operations
or different usage scenarios are
impacted by stress.

We can perform stress-testing
experiments to predict behavior, iso-
late bugs and to perform what-if
experiments to see the impact of dif-
ferent technologies on system per-
formance and availability.

The elements include transaction
generators, load generators and sys-
tem monitors. By separating these ele-
ments, a company can dramatically
reduce testing costs using appropriate
tools and technologies for each ele-
ment individually—without the need
for a one-size-fits all solution.

This article shows how such an envi-
ronment can be set up and used effec-
tively to stress test applications. I’ll
offer examples to illustrate how differ-
ent performance characteristics can
be measured, how bugs can be isolat-
ed, and how development alternatives
can be explored without breaking the
bank.

Such crises as the one I have
described have occurred too many
times. Even if companies have mature
performance- and load-testing capabil-
ities, they sometimes forget some of
the basic what-if analysis that could
have predicted such failures.

I will begin by looking at a Web
application stress-testing environment
as being composed of three critical ele-
ments: a transaction simulator, a load
generator and a system monitor/con-
sole (see Figure 1). Each of these ele-
ments is often found in commercial,
and sometimes quite expensive, per-
formance- and load-testing tools. The
instrumented load test configuration
illustrated shows the relationship
between these three critical elements.

The transaction simulator is a system
that accurately simulates typical trans-
actions of the system under test.
Transactions are simulated one at a
time, as opposed to many instances
running in parallel. Generally, I
reserve workstations that match closely
to a typical user’s workstation for each
transaction simulator.

The purpose of the transaction sim-
ulator is to provide a means to observe
how a typical transaction behaves
while the system under test is operated
under many different conditions. If
the system under test is an online

bookstore, then a typical transaction
would be buying a book.

Generic client-based test automation
tools can be used to implement the
transaction simulator. Generally, I rec-
ommend getting the lowest-cost tool
that can repeatedly simulate a typical
transaction many times in sequence.

Transaction simulators should pro-
vide a capability of measuring the
amount of time it takes to complete all or
individual components of a transaction.

The transaction simulator may be
implemented using manual testing. In
this case, the tester would follow a typi-
cal scenario and take note of the time to
complete all or part of the transaction
using simple timers or a stop watch.

Generally I recommend using a
commercial test automation tool for
transaction simulation that required
detailed timing data for all or part of a
simulated transaction. Tools such as
Mercury WinRunner, IBM Rational
Robot or Segue Silk will do the job
well for transaction simulation. Keep
in mind that you usually need one
basic license of the test automation
tool for each workstation dedicated to
transaction simulation. I would recom-
mend using open-source and home-
brewed tools to support the load-gen-
eration part of the test environment.

The load generator is a series of

FIG. 1: WEB APP STRESS-TESTING ENVIRONMENT

WebBusiness Logic

Console

Generator

Generator

Generator

Generator

Transaction Simulator Transaction SimulatorTransaction Simulator

Event
Log

Event
Log

Event
Log

Event
Log

Event
Log

Data
Server

Transaction
Simulator

Transaction
Simulator

Transaction
Simulator

WebBusiness
Logic

Console

Generator

Generator

Generator

Generator

Robert Sabourin has more than 20 years of
experience leading teams of software develop-
ment professionals. An adjunct professor of
software engineering at McGill University, he
often speaks at conferences on software
engineering, SQA, testing and management
issues. You can reach him at rsabourin
@amibug.com.

mailto:rsabourin@amibug.com

16 • Software Test & Performance MARCH 2006

WEB APPLICATION PERFORMANCE

computers dedicated to the job of gen-
erating a load on the system under
test. The load generators are used to
keep the system under test busy. Load
generation should be varied based on
the goals of any load test required.

Load-testing tools can be used to
simulate typical user transactions in
any mix required. But sometimes pre-
cise modeling of typical end-user
transactions is not required to simu-
late a system load. At some of my cus-
tomer sites, we run a series of custom-
made applets or scripts on each load-
generation system that invoke the sys-
tem’s business logic directly or call
stored procedures to exercise the
application data layer. The load gener-
ator’s job is to keep the system under
test busy.

Tools for load generation can vary
dramatically in cost. Open-source tools
such as OpenSTA or home-brewed
scripts written in Perl or Ruby may be
all you need to generate a very useful
load to stress test the application.

Note that the network bandwidth
should be sufficient to allow for the
amount of data required during load
generation. It is also important to be
able to detect passed, failed or incom-
plete simulated transactions. This infor-
mation may be extracted from log files
or reported by testing tools. More
sophisticated load statistics are available
from commercial load generators.

The system monitor, or console, is a
series of tools designed to study the sys-
tem under test. While the system is
experiencing a generated load, the sys-
tem monitor allows for the study of
resource usage and performance of
the servers. Invariably, I use a combina-
tion of standard operating system
tools, vendor-specific database man-
agement tools and some custom home-
brewed scripts and filters to study sys-
tem behavior during stress testing.

When servers are based on
Microsoft Windows Server technology,
an excellent tool to study system behav-

ior is the standard Windows perform-
ance monitor tool perfmon.

The perfmon tool can be used to
record logs of almost any system
resource under use, including memory
used, processor capacity usage, file sys-
tem access metrics, Web page access
statistics and a myriad of database
parameters including cache hit ratios
and various timing measures.

When servers are based on Unix- or
Linux-based technologies, several
script-based tools such as vmstat can be
used to gather system and resource
usage information of the system under
test during a stress-testing experiment.

Setting Up an Experiment
A Web system-under-test generally will
include a series of services that man-
age the presentation layer, application
logic layer and the data layer. Each tier
of services may be implemented on
one or more physical servers. I like to

ensure that tools I use to monitor
transactions and generate load are
completely independent of the tech-
nology and software used to imple-
ment the Web system under test. On
the other hand, it is common for the
system monitor/console to be imple-
mented in a technology-dependent
manner. Test labs should avoid imple-
menting load generators or transac-
tion simulators that are tightly cou-
pled with the applications service tech-
nologies. I want to make sure I can
completely replace components of the
system under test without requiring
new load generation or transaction
simulation tools.

It is also a good idea to implement
the test environment so that the hard-
ware and software used for load gener-
ation, transaction simulation and
system monitoring can be reused
across many different applications
under test. This reuse is facilitated
by managing and implementing
the system console, load generator
and transaction simulator completely

independently.
Stress-testing experiments can be

implemented using the environment I
have described here. In a stress-testing
experiment, we will be studying how the
system-under-test behaves as we vary the
environment and context in which the
application is running. A common exper-
iment is to study how the application
behaves with different numbers of end
users operating the system concurrently,
but we also can vary how the application
behaves in any harshly constrained envi-
ronment. The key point is that we change
the environment and then study the
same basic characteristics using the trans-
action simulator and system monitor. The
results of stress-testing experiments help
us decide on design alternatives, provide
information that may help us to deter-
mine if we can offer availability necessi-
tated by service-level agreements, and
help us to understand the behavior of the
system under load from the end user’s
perspective.

Experiment 1:Traditional
Performance Testing
A traditional performance testing
experiment can take place by studying
typical transaction time while varying
the load on the system. In this case,
the transactions simulated on load
generators should be consistent with
the expected behavior of users on a
live system. The transaction simulator
is set up with a separate workstation
for each type of transaction being
observed. Test data related to system
resources and processor usage is
collected at the system console. Test
data is collected at the transaction
simulator related to the time to com-
plete a typical transaction as a func-
tion of load.

As you can see in Figure 2, transac-
tion time increases linearly in propor-
tion to load beyond 20 concurrent
stressful users.

Note in Figure 3 that even with a
load of 160 concurrent users (at a
stressful workload), the processor is

FIG. 2:TRANSACTION TIME VS. LOAD

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200

Tr
an

sa
ct

io
n

Ti
m

e
(S

ec
on

ds
)

Concurrent Users

FIG. 3: PROCESSOR USAGE VS. LOAD

0

20

40

60

80

100

0 50 100 150 200

Pr
oc

es
so

r U
sa

ge
 (%

)

Concurrent Users

FIG. 4: MEMORY USAGE VS. LOAD

1980000000
2000000000
2020000000
2040000000
2060000000
2080000000
2100000000
2120000000
2140000000
2160000000

0 50 100 150 200

Fr
ee

 M
em

or
y

(B
yt

es
)

Concurrent Users

MARCH 2006 www.stpmag.com • 17

WEB APPLICATION PERFORMANCE

not saturated.
In Figure 4, we can see that the

memory usage increases linearly in
proportion with the number of con-
current system users from a load of 40
through to 160.

Experiment 2:What-If Analysis
This second experiment is an example
of a series of stress-testing experiments
designed to help a company decide
among four different design alterna-
tives for implementing data interfaces
from applications running on a
Microsoft Windows Server. Microsoft
SQL and ActiveState Perl were used in
the experiment.

Using the stress-testing environ-
ment described in this article, four
major what-if experiments were done
to study different design alternatives
for implementing the business logic of
a Web application under test.

Recently, a client used a stress-test-
ing framework to explore design alter-
natives for implementing critical parts
of its business logic. The technology
was written in Perl running in a Win-
dows NT server environment. The
architecture team wanted to do a bet-
ter job of understanding how different

data communication design alterna-
tives impacted performance and sys-
tem resource usage. Design alterna-
tives included accessing the database
with the standard database interface
module of Perl (DBI) using the
ODBC (Open DataBase Connectivity
Standard) protocol (Experiment 1 A
Perl), alternatively using the Microsoft
Windows Win32 API ODBC library
(Experiment 1 B Perl) and using an
OLE (Object Linking and Em-
bedding) library or using Active X
OLE/ADO library (Experiment 1 C
Perl). The development team also
wanted to explore the impact of switch-
ing from Perl to ASP technology to see
if it may be worth considering a tech-
nology switch (Experiment 1 C ASP).

The three graphs in Figure 5 repre-
sent the result. It is interesting to note
that the ASP alternatives had the
fastest transaction time and lowest
processor usage. Each point of data
was an average of five different test
samples.

Each stress-testing experiment was
indicated using a different color line
in the graphs in Figure 5. As a result of
these experiments, performance and
system resource impacts of different
design alternatives can be considered.
It is very important to note that each
design alternative explored has many
other risks and factors to consider
before a decision is made to imple-
ment it. Keep in mind there may be
different costs across each alternative
as well as risks related to the code
changes needed to implement them.

Experiment 3: Spike-Testing
Analysis
The same stress-testing environment
can be used to determine how a system
will react to different load patterns.
Using open-source tools and some Perl
scripts to simulate the load, and run-
ning transaction simulation using a low-
cost Web testing tool, the following
stress test was performed. Exactly the

same environment was used as indicat-
ed in the previous what-if analysis.

The type of testing used here is
often referred to as spike testing since
we are forcing the system to have a lot
of processing to do in a very short
period of time thus causing a spike in
processor usage.

The next two graphs (Figures 6 and
7) represent two data points of test
results of between 1 and 80 concurrent
submit operations in the application
under test. Load is generated in differ-
ent patterns for each experiment. The

system console is used to track proces-
sor usage during the experiment.
Developers are concerned about the
percentage of CPU capacity used as dif-
ferent numbers of users submit requests
at the same time.

Processor saturation is observed at
80 concurrent users submitting exam
sections at exactly the same time. The
system successfully processes all transac-
tions and then gracefully returns to a
more typical usage of about 20 percent.
No side effects or system failures occur.

The spike testing in this experi-
ment demonstrated that with loads of
80 and more concurrent simultaneous
submits, the system processor was satu-
rated causing the width of the pulses
on the CPU usage graph to grow
wider. If we increase the load further,
the pulses would flatten and get still
wider. Once the width of the pulse
exceeds the time between pulses, we
observe there is not enough process-
ing capacity to handle the load.

With spike testing, we can study
how the system reacts to different
numbers of concurrent user submits
while we vary time between concur-
rent submits. This is analogous to stim-
ulating a system with a pulse varying
both the amplitude (number of con-
current users) and the frequency of
these concurrent submits. Studying
the response of the system to this stim-
ulus gives insights into the behavior of
processes and use of resources. (Some
people may call these graphs response

FIG. 6: 10 USERS SUBMITTING
SIMULTANEOUSLY EVERY 2 MINUTES

Pr
oc

es
so

r L
oa

d

Time

24:57.6 26:24.0 27:50.4 29:16.8 30:43.2 32:09.6 33:36.0

35

30

25

20

15

10

5

0

-5

FIG. 5: EXPLORING DESIGN
ALTERNATIVES

FIG. 7: 80 USERS SUBMITTING
SIMULTANEOUSLY EVER Y 2 MINUTES

Pr
oc

es
so

r L
oa

d

Time
55:12.0 58:04.8 00:57.6 03:50.4 06:43.2 09:36.0 12:28.8

120

100

80

60

40

20

0

18 • Software Test & Performance MARCH 2006

WEB APPLICATION PERFORMANCE

curves.) I often study response curves
to try to identify the impact of ampli-
tude and frequency to resource usage
and response times.

An incredible advantage I gain using
this approach is that I can study the
behavior of a system without the need for
an accurate usage model. What is the
spike response of a system? I consider
these curves a bit like signatures that
characterize aspects of the system. You
do not need perfect usage models to
generate the load required to study the
spike response of a system. In this exper-
iment, I used a blend of open-source
(OpenSTA) tools and low-cost Web-test-
ing tools (Evalid from Software
Research) to generate the load. Oper-
ating system tools (like the Windows per-
formance monitor tool perfmon, script-
based tools like vmstat and spreadsheet
programs like Excel) were used to collect
and analyze the results.

Experiment 4: Bug Isolation
Sometimes a stress-testing environment
can be very useful in bug isolation.
When developers and testers have trou-
ble systematically reproducing a bug,
tremendous costs are often incurred
trying to identify the root cause. I have
often used the same stress-testing envi-
ronment to study the system under test-
ing. The following experiment illus-
trates a chart of memory usage over
time during a load-testing experiment.
In this case, a constant load was gener-
ated over a long period of time.
Memory usage data was collected in an
attempt to identify a memory leak that
shows up only after prolonged system
use during normal operation.

We observe in Figure 8 that at the
start of the test session, some memory is
being freed up. This may be due to
server garbage collection activities or
the completion of system processes that
may be unrelated to the stress-testing
experiment.

We observe a decline in available
free memory as the test continues
through the night. In this case, the rate

of decline was computed to be around
40MB per day. This is a similar curve to
that observed during live operation.

Having reproduced the nasty memory
leak, a new series of experiments was
identified to repeat the situation moni-
toring specific memory usages for active
processes during the testing period.

Memory Used by the Perl Runtime
Environment
Figure 9 shows the memory usage of the
Perl runtime environment, which was
suspected as the root cause of the prob-
lem—but clearly the memory used was
consumed and then restored during the
course of the stress-testing experiment.
This was considered to be a well-behaved
environment.

Figure 10 shows that the SQL Server
process did not release memory
resources during the course of the stress-
testing experiment.

As observed during stress testing,
SQL Server continues to consume mem-
ory at a constant rate. In this case the
rate is 40MB per day.

The technical staff at Microsoft con-
firmed that the memory behavior of SQL
Server was as expected during the test
period. These results confirmed the
source of the memory leak and were
used by development and network sup-
port staff to identify several ways to tune
system performance and resource usage.

Other Sources of Stress
When the stress-testing environment is
established, a few other types of experi-
ments may be useful depending on
your technical and business needs.
Here is a short summary of some stress
tests that I have frequently implement-
ed in the same environment. Some of
these stress-testing ideas might help
you.

Forced Errors: Study system behavior
when you force or simulate intermit-
tent failures of processes or servers.

Data Sets: Investigate how perform-
ance is affected with different sets of

data. Explore what happens if the data
set is nearly full, nearly empty or con-
figured with different database cache
settings.

Resource Hogs: Run programs on the
servers that consume system resources
in parallel to the normal running
processes. Consume processing capaci-
ty, memory and other system resources,
and then observe how the application
behaves.

Shared Processes: Create applications
that call processes used by the applica-
tion under test. Stored procedures can
be run to create and remove records
from the database in parallel with nor-
mal application processing. Gain in-
sights into how the application under
test can perform if shared processes are
used by other applications. Databases
are shared by many applications other
than the one being tested.

HTTP Attacks: Simulate denial-of-
service attacks while the system is under
normal load conditions. Study the
impact on performance.

Network Bandwidth: Study system
behavior as the amount of network
bandwidth is reduced.

You Can Do It!
A cost-effective way to perform stress test-
ing can be achieved with a versatile test
environment. In order to keep the costs
down and be able to perform many differ-
ent types of stress tests, keep in mind that
it is important to separate the load gener-
ation from the transaction simulation and
the system console elements of the test
environment. I recommend combining
open-source and home-brewed tech-
nologies for load generation with com-
mercial tools for transaction simulation.
I also recommend custom-made scripts
using system tools and log analyzers for
the system monitor when possible.

Stress testing is not limited to study-
ing system performance under load;
you can also perform what-if analysis to
study design alternatives, model differ-
ent system usage patterns and help iso-
late tricky bugs.� ý

FIG. 8: MEMORY USAGE OVER TIME

FIG. 9: MEMORY USAGE OF THE PERL
RUNTIME ENVIRONMENT

FIG. 10: SQL SERVER MEMORY
CONSUMPTION

Now on the East Coast!

The only technical conference focused on
software security at the applications level

is coming to Baltimore!

www.S-3con.com

 Secure YourSoftware

w
w

w
.S

-3
co

n.
co

m

■ Learn How to Build
Secure Software

■ Secure the Software
on Your Network

■ Test the Security
of Your Software

■ Implement a Layered
Approach to
Application Security

■ Architect Security Into the
Development Life Cycle

■ Understand Software Security
Vulnerabilities

“It’s THE conference for
developers and testers
who are concerned with
software security.”

Wei Feng, Senior Architect,
GrapeCity Inc. (Japan)

“Anyone involved in
software security
should attend.”

Frank Perrelli, VP,
Common App Services,

Pershing LLC

“A good place to learn
how hackers work
and how to stop them.”

M. Wan, Development
Manager, Thomson Financial

“Eye opening.”
Amy Haselhorst,

QA Engineer, Ceridian

More Than
Classes & Tutorials!

40

June 5-7, 2006
Hyatt Regency l Baltimore, MD
www.S-3con.com

A BZ Media Event

“If you are interested in
writing more secure software,
go to this conference.”

Richard Morris, Staff Firmware
Engineer, Applied Biosystems

http://www.S-3con.com

While there are numerous automation
tools available, many factors, such as
custom needs (for example, API-based
tests), complex test flows and high
cost, lead to the development of cus-
tom test harnesses. The purpose of this
article is to describe the conditions in
which custom test harnesses are creat-
ed in the software testing space. While
a variety of custom test harnesses are
created depending upon specific
needs, I will attempt to cover the com-
mon features and architectures of such
creations.

If you are concerned that commercial
test automation tools are not suitable for
some of your test contexts, this article will
answer questions such as: “What is a cus-
tom test harness and when should one
create it?” “When there are so many test-
ing tools available, why should one
author a custom test harness?” and “What
are the design considerations?”

Test harnesses are used in a wide vari-
ety of situations, but the major classifi-
cation could be black-box-versus-white-
box modes. In either case, there is a
need for programmatic design and exe-
cution of the tests. This article deals
with black-box custom test harnesses

that perform specification/functionali-
ty-based testing. The white-box test har-
nesses are usually not custom created by
each application development shop and
are usually available as ready-made tools
(for example, unit test frameworks such
as xUnit; where x could be any pro-
gramming language you may desire).

A Programmer’s Solution
A custom test harness, as the name
implies, is a custom tool that addresses
and operates in a particular context. The
“test harness” part of it could be defined
as “a programmatic solution designed to
exercise a variety of touchpoints/entry
points in/of your system/application to

20 • Software Test & Performance MARCH 2006

Rein In

Complex Test

Flows And

Plow Through

Functional

Testing

By Ashwin Palaparthi

Many development shops write custom test drivers to
automate some of their functional testing, which helps

speed up the QA process and make it much more accurate.

verify/validate the functional behavior in
an automated fashion.”

There are no boundaries to what a
custom test harness can encompass, but
it is very usual to exercise the program-
matic external interfaces of a system and
additionally validate the data stores—a
dual approach to the system/application
validation. Black-box custom test har-
nesses might appear analogous to white-
box-based unit test driver programs, but
they hugely differ in ways such as 1) not
just checking the function return values
but by validation at all the layers, and 2)
sequencing multiple calls to form and
test a user scenario rather than direct
one-off function calls.

The Need
To make use of the functionality offered
by a system or application, the interface
exposed depends on the user of the
functionality. For example, in the case of
general human users, you would go with
GUI applications that are essentially
browser-based or rich clients, which can
be automated using tools like IBM
Rational’s Robot and Mercury’s Win-
Runner. In the case of the user being an
external system by itself, you would go
with application programming interfaces
that link the functionality through pro-
grammatic functions/procedures. You
would want to automate testing these
APIs and also perform nontrivial valida-

tions by performing some logic in the
back-end databases, doing such things as
file comparisons. In a situation like this,
we do not have a single centralized test
controller application/product available
to do what exactly we need, which leads
to the need for a custom test harness.

The need described above increases
when we have orchestrated scenarios
with a mixed sequencing of GUI and
API calls and intermediary file/data-
base validations besides other program-
matic validations. In scenarios like this,
we would still need to build our custom
test harness where it would additionally
invoke the GUI automation scripts
(written using GUI automation tools
available in the market) partially and
perform other custom steps.

The history of software testing
strongly suggests that there is no single
silver-bullet process for software testing.
While test automation tools are getting
increasingly commoditized with the
availability of several options in the mar-
ket, there are a lot of process-centric
gaps that would induce someone to cre-
ate a homegrown custom test harness.
The simplest example would be to write
an end-to-end smoke test driver that will
perform basic but distributed valida-
tions on all layers of your application.

Philosophically speaking, if you want
to program the logic of testing, as
opposed to testing the logic/functional-
ity of your application with predeter-
mined test logic/methods, you would
need a custom test harness.

Common Features
While there could be several black-box
custom test harnesses that are designed
to serve different purposes, oftentimes
there is a common set of features that
are usually noticeable in many of them.
Here are some examples:

• An intuitive GUI tool for authoring
test cases and selecting tests that
make a test suite. This becomes a
mandatory feature in cases where
the test engineers (that are the tar-
get audience of a custom test har-
ness) cannot spend time on trivial
and complex file-editing proce-

MARCH 2006 www.stpmag.com • 21

Ashwin Palaparthi is the principal architect
of AppLabs, a global IT services company
specializing in software testing and develop-
ment. He has overseen the architectural
aspects for many custom-test-harness-based
QA projects. You can contact him at ashwin
.palaparthi@applabs.com.

mailto:ashwin.palaparthi@applabs.com

22 • Software Test & Performance MARCH 2006

dures to author test suites.
• A standardized way to specify setup

and cleanup procedures. You
would need a custom setup proce-
dure to simulate the real-time
environment and perform any
other initialization needed by the
tests.

• A magic engine that will parse the
test files and create and run the
test cases from a test suite (using
the sequence and parameters as
dictated by the input files).

• The ability to parameterize and
invoke/spawn external programs
for certain portions of the test.

• A set of validation features that
include analyzing the output for
expected (or unexpected) results,
and performing database valida-
tions.

• Features to perform declarative
analysis and diagnosis on the
results in a custom fashion.

• A manager-friendly feature of
result/failure reporting.

• A plug-in style architecture to
bring in new adapters for new
targets so that the rest of the tool is
applied as-is in the new context.

Common Architecture
One of the essential things this article
does not cover is the discussion about
methodologies you could adopt in deal-
ing with different segments of a custom

test harness, which is a topic that would
take up an entire separate article. For
example, for test parameterization we
could go with Category Partitioning,
Markov Modeling and a few other
methods. Regardless of the methodolo-
gies, there usually are a set of core ele-
ments that compose the architecture of
a custom test harness (see Figure 1).

The components of the harness with
their generic names/definitions could
be as follows:

Test Author UI: Many custom test har-
nesses were created by the program-
mers who were themselves the original
users. Many of these tools when passed
on to the QA team were deemed not to
be intuitive ones and hence discarded.
The QA teams either resorted to manu-
al testing or waited for the release of an
off-the-shelf tool in the market. The
fundamental principle here is that the
purpose of a custom test harness is not
just testing the target system but also
providing intuitive usability features for
the QA engineers. So, for editing any
flat files such as CSV and XML files that
need special editors, it is very important
to abstract the editing methods into a
nice and simple UI. This component
should be able to construct test data
files. For example, complex XML edit-
ing could be taken out by leveraging
something like Xerlin (an open-source
option).

Test Generator: Oftentimes it is not

just the raw test data that is persisted in
test data files—there will also be a lot
of metadata that is stored. A program-
matic parser would be needed to
decode all those files and prepare pro-
grammatic objects. Test Suite is an
ordered collection of Test Case compo-
nents that represent the test targets,
the parameters and the expected
results. Again, these components
should deal with generic placeholders
more than hard-coded values. For
example, Freemarker (again an open-
source option) can be leveraged in
replacing hard-coded values by templa-
tized placeholders in XML files.

Test Execution Engine: This is the
main controller component that per-
forms all the commands as laid out by
the Test Suite component and with the
information generated by the Test
Generator component. A key subcompo-
nent of this component is the Adapter.
An Adapter is needed for each type of
command we perform. These could be
wrappers that invoke the target APIs or
Protocol Adapters that generate a specif-
ic type of message needed by the pro-
tocol in context. One or more Adapters
could be used by the Test Execution
Engine.

Response Recorder: This logs all the
results for a later analysis, most of the
time in a structured format, and the
Validator at a minimum performs asser-
tions on the response data. Validators
usually perform additional functions
such as database validation, file com-
parison and so on.

While architecting a custom test har-
ness, enough care should be taken to
ensure reusability. A situation in the
future would be to move away from
your custom tool and use an off-the-
shelf tool that would have proven itself
by then. In such cases, some of the code
in your custom tool could be plugged
into the new context if it follows the
interface rules. The opposite situation
could be one in which your custom tool
remains to be the master controller and
may invoke some off-the-shelf tools for
certain portions of the tests. So, plug-in
architecture and the facilitation of
external program execution should be
considered by the architect.

Advantages
There are many advantages to using a
test harness. Some of them are as follows:

• Philosophically speaking, any
method that is reusable has repro-

CUSTOM TEST HARNESSES

Test Author UI

Test Generator

Test Suite

Test Case

Analyzer and Report Generator

Test Execution
Engine

Response Recorder

Validator

Adapters
(Protocols/
APIs, etc.)

Te
st

 D
at

a
Fi

le
s

(F
la

t/
X

M
L

, e
tc

.)

Target S
ystem

 L
ayer

Target D
atabase L

ayer

Console/File Reports

FIG. 1: COMMON CUSTOM TEST HARNESS ARCHITECTURE

www.stpmag.com • 23
MARCH 2006

ducible behavior; this is why a
custom test harness can be used to
get a failure surfaced consistently;
which would otherwise need
evidence that something has (or
has not) worked in a particular
environment.

• Early adaptation of automation is
possible on applications developed
using new technologies. Testing
tools are always after the fact,
meaning the technologies that
they target have to be used widely
in the market. For example, two
years ago automating applications
developed using FIX protocol at
the API level was not possible
unless we authored a custom test
harness. Today the market has
started providing off-the-shelf tools
in this area.

• Once in place, you can use a
custom test harness to cut regres-
sion testing time and error rate
while not having to pay huge dollar
amounts to tool vendors. Added to
this is the flexibility you have for
modifications and enhancements.

• Companies that have built custom
test harnesses over a period of time
continue to use them even though
the market has now released tools
that relate to their context, as
many of these tools do not make a
highly appealing case.

A Set of Rules
Here are some rules of thumb for devel-
oping a custom test harness.

Never think of building a custom test
harness if the market already has a tool
for your context. You’re not going to save
money by building tools that are not core
to your business. However, once the cus-
tom-test-harness path is chosen, due care
must taken to strategize its usage.

When developing a custom test har-
ness becomes necessary, plan an
agile/rapid approach where you can
quickly see it (or at least part of it) in
action. Heavyweight waterfall approach-
es are too risky for lateral tools develop-
ment that enables your core applica-
tion/product development. Brief speci-
fications derived from interviewing QA
engineers on their needs and a brief
design followed by fast implementation
should yield better results for any cus-
tom test harness development.

The most important requisite that
needs to be in place before attempting
to write a test harness is that the actual

designers/developers who author the
harness need to understand the needs
of the manual QA engineers.

It is very likely that the test harness
will have a short life if it relies on the
technical skills of people who use it. That
suggests to us that we design it in such a
way that it not only cuts the time and
human intervention involved, but also
offers its features in an intuitive way.

Use open-source tools to the greatest
possible extent. Fifty percent or more of
code that needs to be written in devel-
oping a custom test harness can be
avoided by leveraging open-source tools
such as Xerlin, FreeMarker, Regular
Expression libraries, and STAF for dis-
tributed test control.

Architecturally speaking, your cus-
tom test harness should be assembled
with object-oriented components that
can be reused (or replaced). A purely
monolithic scripting approach to cus-
tom test harnesses will not suffice, and
in such cases you are better off writing
some huge non-GUI-related complex
test logic inside GUI automation tools.

As with any other automation tool,
target only repeatable regression tests on
stable features of your application and
use other methods on the new features.
Once test files have been created, we
don’t want our QA teams editing them.
Our test suites should be open for exten-
sion and closed for modification.

If you are trying to do code-level
white-box testing or functional-level
“performance testing” through a custom
test harness, a better alternative is open-
source and commercial tools. A custom
test harness makes sense only in a com-
plex and unique functional testing con-
text most of the time.

Not a Full Replacement
Factors such as automation of custom
test methodologies and adaptation of
automation on applications developed
using newly born technologies create
the scope for custom test harnesses.
By no means are these custom tools
competitors or full replacements for
commercial test automation tools. You
should build custom test harnesses only
when you have a real need.

Building a custom test harness
should never be a major project in
itself, and the best approach is to
author one rapidly when the need
strikes and then let it evolve incremen-
tally side by side with your other devel-
opment efforts. ý

CUSTOM TEST HARNESSES

http://www.itko.com

publicized security breaches have
angered consumers and legislators. As a
result, businesses are finding themselves
compelled to put enforcement and
monitoring processes in place for access
control, financial reporting and permis-
sion marketing. Security regulations
proliferate, and audits are becoming
more frequent.

Meanwhile, software architects, IT
managers and business managers are
exploring new technologies, such as
Web services and service-oriented archi-
tectures (SOAs). These technologies
promise to increase business agility,
accelerate time-to-market, and reduce
IT and operational costs. An SOA solu-

tion replaces large, monolithic applica-
tions with configurations of smaller,
reusable software components that are
designed and quickly assembled to meet
the specific needs of a business offering
or service. While an SOA can be imple-
mented without Web services, most SOA
implementations today use Web services
based on XML and HTTP. In large
enterprises, Web services are most likely
standards-compliant, SOAP-based Web
services protected by technologies that
comply with the OASIS WS-Security
standard.

Are these two trends—increasing
regulatory pressure and the migration
to SOAs—related in any way? Do SOA
security vulnerabilities make regulatory
compliance more difficult? Or is the
unfolding SOA revolution an opportu-
nity for businesses to tighten controls
over their business processes and online
services?

If you’re an IT manager, security pro-
fessional, software developer or QA
tester working with Web services and
SOAs, here are five things you should
know about compliance, security and
Web services.

HOT TIP
NUMBER 1:
Because Web
services are
loosely coupled
and granular,
they provide a

better infrastructure for protecting
confidential data and securing bus-
iness processes than traditional,
application-centric security
approaches.

A West Coast financial services firm
recently replaced its traditional LDAP-
based identity management system
with a new SOA-based identity man-
agement system because the company
recognized that the security landscape
is changing. New business models,

Jack Quinnell is CTO of Kenai Systems. He
has more than 30 years’ experience in devel-
oping and marketing voice and data network
communications products. You can contact
him at jquinnell@kenaisystems.com.

By Jack Quinnell

I n a number of industries, businesses face pressure to
comply with regulations that mandate data security

and network integrity. Accounting scandals and well-

1

P
ho

to
gr

ap
hs

 b
y

G
eo

ff
 D

el
de

rf
ie

ld
24 • Software Test & Performance MARCH 2006

mailto:jquinnell@kenaisystems.com

For Making Web Services
Compliant and Secure

Internet applications and mobile com-
puting have effectively eliminated the
network perimeter. To provide com-
prehensive security that is robust
enough to withstand increased regula-
tory scrutiny, every application and
every information asset must be identi-
ty-enabled. The best way to implement
identity management on this grander
scale was to adopt an architecture
based on end-to-end business process-
es. As the company put it, it needed
“to get identity out of the apps, and
into the business process.”

The company replaced its LDAP
directory and update scripts with a
new set of internally developed Web
services, including a metadirectory
service that manages updates. This
new SOA-based solution improved the
coverage and the accuracy of the com-
pany’s identity management functions.
Since January 2004, the service has
achieved 99.95 percent uptime.

For businesses such as financial
services companies, telecommunica-
tions companies and health-care
organizations that face increased regu-

latory scrutiny, the best approach for
strengthening security and reducing
regulatory risks is to use SOAs to
build security and compliance into the
business process. Designing solutions
for end-to-end business processes,
rather than for intermediary client/
server transactions, ensures that data
is always secure, wherever it happens
to be in the course of a business trans-
action.

Financial services firms and similar
organizations require a flexible soft-
ware architecture, such as an SOA, in
order to keep pace with growing lists
of regulations.

According to IT analyst company
RedMonk, “Leading with siloed
applications may be adequate for ini-
tial, tactical compliance, but that
approach introduces significant com-
plexity and limitations over the
longer term. The sheer variety and
scope of compliance challenges
require that IT organizations address
compliance issues at an architectural
level, using a fluid, adoptive ap-
proach. Organizations should deploy a

Growing

Regulatory

Pressure And

The Migration

To SOAs

Present New

Challenges

REGULATORY COMPLIANCE

services-based architecture that can
deliver compliance-specific services as
necessary, based on specific acts and
regulations.”

Instead of addressing regulations in
isolation, enterprises should deploy
enterprisewide security capabilities
that can be applied to meet the com-
pliance requirements of each depart-
ment and division. The same authenti-
cation capabilities can ensure compli-
ance with both Sarbanes-Oxley and
Gramm-Leach-Bliley. Enterprises do
not need to invest in regulation-specif-
ic solutions; rather, they can invest
once in security building blocks that
can be deployed and redeployed as
necessary to comply with whatever reg-
ulatory requirements are in force.

Creating these building blocks with-
in an SOA makes sense, as the goal of an
SOA is to deliver common, reusable
services that can be applied wherever
they are needed. The SOA model facili-
tates implementing broadly accessible
components designed to ensure compli-
ance in a cost-effective manner.

HOT TIP NUMBER 2:
The best way to ensure that Web
services are secure and compliant
is to build securi-
ty and compli-
ance into Web
services compo-
nents and verify
security and com-
pliance during
the QA process,
before the services are deployed.

Rather than relying on XML fire-
walls and other data center technolo-
gies to plug all the security holes in an
SOA application, enterprises would do
better to build security into their appli-
cations during the development phase.
By systematically applying security poli-
cies and best practices, while testing for
the presence of common vulnerabili-
ties, enterprise IT departments can
ensure that the Web services deployed
in the data center are already reason-
ably secure and policy-compliant.
Production-stage technologies, such as
XML firewalls, simply become an addi-
tional layer of security, rather than the
sole bulwark against all attacks.

This approach minimizes risks for
four reasons. First, it minimizes the
dependency upon firewalls and other

defensive products; the software is pro-
tected, even if these products fail to
block every intrusion or attack.

Second, it makes Web services run-
ning within the network perimeter less
vulnerable to attack from insiders—
users who might not be blocked by out-
ward-facing defenses such as firewalls.
Insiders are now responsible for 70 per-
cent to 80 percent of attacks on enter-
prise networks.

Third, if the Web service is going to
be shared with partners, customers or
other sites outside the control of the cor-
porate IT department, built-in security
minimizes exposures to risks caused by
oversights and omissions in the data cen-
ter security of those other organizations.

Finally, by incorporating security and
compliance testing into the standard
testing and release process, enterprises
can make security a reliable feature of
every Web services release.

Another advantage to this approach
is cost. According to research firm
Gartner, fixing a vulnerability in devel-
opment costs only 2 percent of what it
costs to fix that same vulnerability in
production. That’s a 50x saving for each
vulnerability found.

To improve security while lowering
costs, enterprises should test for securi-
ty during development.

HOT TIP NUMBER 3:
To test for security and compliance,
QA teams and
development
teams need an
automated soft-
ware solution
with built-in
policy knowledge.

Any enterprise interested in promot-
ing a security and compliance testing
practice within its IT organization is
going to face several challenges that
they can overcome through automation
and knowledge sharing.

One challenge is that software devel-
opers and QA testers are not security
experts, and enterprises cannot afford
to train them to become security
experts. Second, the security experts in
the organization, such as the CSO,
CISO and his or her security team, have
no way of systematically transferring
their knowledge of software vulnerabili-
ties and security best practices to the
development team. Security policies
may be scattered across written docu-
ments and e-mail messages, but they are
not encoded in a way in which they can
be systematically applied and moni-
tored in development and testing.

Enterprises need an automated
framework that enables security experts
to encode their knowledge in policies
and rules that can be passed to develop-
ment and QA teams in a reliable, usable
format. This automated framework
should take advantage of the domain
knowledge of each group—security, QA
and development—without requiring
security experts to become developers
or developers to become security
experts.

Automation eliminates the errors
and redundancies commonly found in
manual processes. It scales to accommo-
date growing SOA implementations
and supports growth that handwritten
testing scripts would be unable to
accommodate. By minimizing manual
work, it ensures that lack of manual
resources doesn’t become an excuse for
companies deferring the adoption of a

2

SOA

Management Compliance

Registry Firewall

Security and Compliance
are essential in any SOA
Deployment.

Assure:
• Confidentiality
• Integrity
• Availability

Apply knowledge of
CSOs to everyday
development and testing.

FIG. 1: KEY COMPONENTS OF AN SOA DEPLOYMENT

3

26 • Software Test & Performance MARCH 2006

REGULATORY COMPLIANCE

rigorous security and compliance test-
ing methodology.

HOT TIP NUMBER 4:
A security and
compliance test-
ing solution
should be able to
assess the effec-
tiveness of the
security building
blocks required
to keep information confidential
and secure.

While regulatory requirements vary
from industry to industry and legislative
act to legislative act, a few common
security building blocks are common to
just about all major industry regula-
tions. For example, authentication,
encryption and resilience to attack are
capabilities common to almost any secu-
rity solution to achieve compliance.

The Gramm-Leach-Bliley (GLB) Act
compels financial institutions to imple-
ment security measures to protect the
confidentiality of consumer data. At any
financial institution, these security
measures will include access control
measures involving authentication,
authorization and data encryption.
Only users who present valid IDs should
gain access to consumer data, and con-
sumer data should be encrypted when-
ever it’s exposed to public networks or
other potentially hostile
environments.

The Health Insurance
Portability and Account-
ability Act (HIPAA) re-
quires health-care organ-
izations (HCOs), includ-
ing payers such as insur-
ance companies and
providers such as hospi-
tals, to protect patient
data through a variety of
security measures, includ-
ing authentication and
encryption.

GLB pertains only to
financial services compa-
nies, and HIPAA pertains
only to HCOs, but in
each industry organiza-
tions are likely to turn to
the same security technologies to
achieve compliance. Top-down securi-
ty policies, authentication controls for
networks and applications, identity
management and encryption can

facilitate compliance in both these
industries.

The success of compliance technolo-
gy depends on its ability to implement
and assure core building-block security
measures. Compliance assessment for
SOAs should include tools for testing
these building blocks. Is consumer data
encrypted when it traverses the net-
work? If a specific business service
requires authentication, are authentica-
tion measures being enforced? Does
a portal withstand common attacks?
Vulnerability assessment and policy
compliance provide the visibility to help
developers, QA testers and compliance
officers answer questions like these.

HOT TIP
NUMBER 5:
Once Web services
are deployed
in production,
test for security
and compliance
again, using the same policies and
automated test solution.

It’s most cost-effective to test for
security and compliance while Web
services are still being developed. But
to ensure that no new vulnerabilities
are introduced by gaps in change man-
agement or on-the-fly configuration
changes, enterprises also should regu-
larly test Web services in the produc-

tion stage.
The process used for

development-stage testing
should support produc-
tion-stage testing as well.
When a CSO or other
security professional
defines a security policy to
follow during develop-
ment, that same security
policy should be applied in
production too.
Vulnerability profiles and
other test metrics used in
development should also
be applied in production-
stage testing.

Using the same testing
solution for both develop-
ment-stage testing and
production-stage testing

saves money by eliminating the need for
an IT organization to invest in parallel
but separate security and policy compli-
ance testing solutions.

Administrators and compliance offi-

cers can discover vulnerabilities and
exposures if they can compare test
results across life-cycle stages. If security
tests that passed during development
suddenly fail in production, the IT
department knows that a potentially
serious change has occurred. They can
then use the knowledge they gained
from their development-stage testing to
find and fix the problem quickly.

A Turning Point
We’re at a turning point for Web servic-
es. Analyst firms agree that more than
75 percent of enterprises now have Web
services projects under way. Web servic-
es have become essential business tech-
nology for companies like Amazon.com
and eBay, and organizations such as
banks are busy rewriting their online
applications to run as Web services. We
can expect to see Web services gain
even more momentum in 2006.
Microsoft chairman Bill Gates’ recent
endorsement of Web services business
models is simply one more spark for the
kindling.

We can also expect to see regulato-
ry enforcement organizations, such as
the SEC and the FTC, continue to scru-
tinize corporate operations and punish
wrongdoers. Many regulations require
organizations to monitor their own
progress and to continually improve
their performance. It’s likely that in
2006 and 2007 auditors will look for
tangible signs of improvement. Putting
compliance and monitoring practices
in place might suffice for year 1. But by
year 2 or 3, it should be possible to
measure progress. Auditors will be
looking for reports and quantifiable
results.

Enterprises can take advantage of
SOAs while meeting regulatory chal-
lenges. At the same time, they need to
recognize that the public interfaces
and new technologies of SOAs pose
threats to network security. Gartner
estimates that Web services will reopen
roughly 70 percent of the security
holes that firewalls and other security
products have closed over the past
decade, so enterprises must build
security and compliance into every
Web services component they deploy.

Even Web services pilot projects
should be built with security in mind.
It’s a mistake to assume that services
deployed within the firewall are safe.
The majority of security attacks now
originate with insiders, including dis-

4

5

•
It’s a mistake

to assume that

services deployed

within the

firewall are safe.

•

MARCH 2006 www.stpmag.com • 27

28 • Software Test & Performance

Subscribe Today!
www.EclipseReview.com

Eclipse Review is a
NEW quarterly magazine

for IT professionals, developers
and testers who

use Eclipse-based tools
and technologies.
REGULATORY COMPLIANCE

gruntled employees. Pilot projects need
to be safe from these “trusted” users.

Pilot projects also provide an oppor-
tunity for enterprise IT teams to test
and to develop the security and com-
pliance mechanisms they will deploy
along with their production Web serv-
ices. Rather than assuming that
mature, foolproof security and compli-
ance mechanisms can be developed on
the spot when Web services are ready to
deploy, IT teams should design, imple-
ment and assess these mechanisms
along with the Web services they are
designed to protect.

What can developers do to lead in
these efforts?

• If your development team isn’t
already exploring SOAs, start now.
The technology is mature enough
to offer real benefits. Survey results
make it clear that your partners and
customers will likely expect you to
be delivering Web services soon.

• Work with your organization’s CSO
and security team to identify the
common security requirements of
the industry regulations that apply
to your organization.

• Design and implement Web services
that act as “security building
blocks,” providing these common
security services, such as authentica-
tion, encryption and so on.

• Ensure that all new business services
and SOA applications incorporate
these “security building blocks.”

• Invest in an automated testing
framework that enables CSOs and
security professionals to define
policies (using assertions such as
those in the WS-Policy standard),
which can be automatically translat-
ed into test suites for use in devel-
opment and QA.

• Make security assessment and
compliance testing part of develop-
ment. End users want to buy
products and services that are
secure out-of-the-box. The best way
to create these products and
services is to make security an
intrinsic part of software design and
development.

Through SOAs, developers have an
opportunity to play an important role,
not just in creating new applications for
end users, but also in helping their
organizations meet regulatory their
requirements. It’s an exciting opportuni-
ty and one that developers should not
overlook. ý
MARCH 2006

http://www.eclipsereview.com

in an organization. And just as quality
assurance is about processes, so is
maintaining and advancing the motiva-
tion and capabilities of members of the
QA staff. The feedback involved in the
staff evaluation process represents one
such process.

Everyone has to go through this in
one form or another. It gives QA staff
members the opportunity not only to
get feedback on their performance,
but also to find out areas in which they
can improve.

The process begins with a commu-
nication from a manager reminding
staff members to complete a self-evalu-
ation as part of a year-end appraisal
process. Then, as the other half of the
appraisal process, they are asked to
schedule a meeting with their manager
to discuss their performance. Almost
everyone goes through a similar
process. The obvious question is:
“What do we get out of this process?” Is
it just a formality so that a company
looks better in terms of having a
process in place, or is it just to deter-
mine how much of a raise and/or a
bonus an employee gets based on the
manager’s rating? This article presents
a few guidelines that, if followed in

such feedback meetings, might help
make these meetings more productive
and successful than they would have
been otherwise.

The Appraisal Loop
In the context of staff evaluations, a
feedback cycle usually consists of a
three-step process like the one depict-
ed in Figure 1. First, staff members set
a few goals to accomplish during some
specific time period, generally a calen-
dar year. These goals are normally
aligned with each employee’s future
goals and aspirations. Next, they work
toward achieving the goals during
the set time period. Finally, they meet
with their respective managers to
discuss the progress at regular inter-
vals. The manager gives them ratings
during a final year-end appraisal meet-
ing based on their performance dur-
ing the year.

A feedback meeting should be well-
structured and its goals properly stated.
The feedback goals do not necessarily
comprise only work-related goals; they
can include a staff member’s personal
development goals as well. One of the
important objectives of these meetings
is to guide employees, through honest

i n p u t s ,
along the
path each has
envisioned for
himself or herself.

From a manager’s perspective, four
objectives of this feedback process are
to:

• Provide frank feedback on the
staff member’s performance.

• Instill confidence by praising his
or her commitment to the team.

• Identify areas of improvement.
• Discuss both the positive and

negative aspects of the staff mem-
ber’s performance.

Feedback: Roles and
Responsibilities
The two necessary participants in any
feedback meeting are a manager and a
staff member. The feedback process
should not be a one-way street where a
manager rates a staff member who
merely listens to the input. Staff mem-
bers are an important component of
these meetings, and their participation,
together with the participation of their
managers, is one of the keys to achiev-

Prakash Sodhani is a quality control special-
ist who has worked in a number of IT organ-
izations in different capacities as a quality
professional. He can be reached at Prakash
.Sodhani@gmail.com.

P
ho

to
gr

ap
h

by
 N

or
m

an
 C

ha
n

By Prakash Sodhani

Quality assurance is all about processes. It involves
activities designed to maintain and improve processes

In QA
Staff Reviews,
What Goes Around
Comes Around
MARCH 2006 www.stpmag.com • 29

mailto:prakash.sodhani@gmail.com

MANAGING STAFF EVALUATIONS

ing the goals set out for such meetings.
Let’s discuss each participant’s role

in more detail. The manager’s role is
not limited to rating a staff member in
feedback meetings. The feedback that
managers have to offer is an important
factor in accomplishing the objectives
previously set for these meetings.

Here are some of desired goals that
managers should try to achieve in this
process. They should:

• Give feedback that helps in the
overall development of staff mem-
bers. Feedback such as “You are
doing a great job” is not of much
help.

• Be clear, concise and consistent
with feedback. Managers should
not just say what staff members
want to hear or be too critical of
their performance.

• Be ready with specific instances to
illustrate their views. Just saying
“Do it” will not be of much help.
There should be a good justifica-
tion behind everything they say.

• Always talk about the work and
not about the individual. People
might be willing to listen to criti-
cism of their work but not to
something that targets them
personally. It’s better to say, “Your
last report needs a few modifica-
tions” than “You don’t write
reports well.”

• Encourage staff members to ask
questions. They need to be able
to count on, rather than fear,
their manager.

A staff member’s role is often
underestimated in feedback meetings.
In these meetings, a manager rates
someone who then willingly or unwill-

ingly has to acknowledge that input.
The role of the person being evaluated
in these meetings is as important as
that of the manager.

The following are some goals that
staff members should try to achieve in
such meetings. They should:

• Be willing to ask questions. It’s
better to ask than to remain in
ignorance.

• Always ask what their manager
thinks they need to work on.
Some managers are too nice to
mention such things. They prefer
to just give feedback that sounds
good. It’s the staff member’s
responsibility to get this informa-
tion by asking specific questions.

• Ask for specific instances where
their manager thinks they should
have done something better and
where they made mistakes. This
will help them to avoid repeating
the mistakes in the future.

• Always mention that they want to
learn and that the manager’s
feedback will go a long way in
helping them achieve their goals.
This will make it clear that their
objective from this meeting is to
get an honest opinion about
them from management.

The Feedback Meetings
Typically, staff members should meet
with their managers at frequent inter-
vals to discuss their performance and
get feedback.

Let’s look at a typical conversation
between a staff member, say Peter, and
his manager, say Kate, during one of
these feedback meetings:

“What do you think about my perform-

ance,” Peter asks with intent to start the dis-
cussion.

“I think you are doing a great job, and I
am really happy that you are a part of this
team. Actually, I was talking to other mem-
bers of the team and everyone was happy
with your work,” Kate replies.

“Thanks. Do you have any more com-
ments,” Peter asks with a big smile on his
face.

“Not really. Keep up the good work. Let’s
just go over the appraisal forms and com-
plete the formalities,” Kate says.

Such a conversation raises a few
questions:

• What was the outcome of such a
meeting? Was the objective
achieved?

• Did Kate’s evaluation help Peter
in any aspect?

• Did Peter do his part by not
specifically asking for comments
that might have been more help-
ful to improve his performance?

Feedback Dissected
Feedback can essentially be of two
types: positive or negative. While posi-
tive feedback is crucial to let people
know about their areas of strength,
negative or critical feedback comple-
ments it by identifying areas in which
improvement is needed.

Both types of feedback are essential
for an employee’s overall develop-
ment. A feedback meeting is incom-
plete unless both positive and negative
feedback have been offered.

Everyone likes to hear positive
comments about themselves. Let’s
look at an example from Kate about
Peter:

“Peter did a wonderful job as a test engi-
neer during the past year. He completed his
work on time and found good favor among
the team members. He was also very punc-
tual and handled his responsibilities well.
His work finally led to a successful interim
release of this project.”

Let’s look at the feedback above
closely.

What does it achieve, and what does
it miss? Feedback like this lets
Peter know that his manager, Kate, is
happy with his work. Peter, possibly,
thinks that Kate wants him to continue
doing what he has done till now. In
all probability, he expects that he is
going to get a raise and possibly a
bonus based on this feedback.

However, such feedback misses the
mark. It implies that Peter is a perfect

Decide on your goals
and objectives at the
beginning of the year

Get the rating by your
manager during the
year-end appraisal

Work on achieving
those goals

FIG. 1: A TYPICAL APPRAISAL LOOP
30 • Software Test & Performance MARCH 2006

employee and encourages him to con-
tinue as before. It doesn’t identify any
areas for him to improve on, which is
one of the key aspects of any feedback
meeting. Moreover, it doesn’t include
any comments that might help Peter to
achieve his future goals.

Learning is a continuous process.
There is always something to learn and
improve upon. While positive feedback
achieves a part of what is expected in
these feedback meetings, it fails to
identify the areas in which an employ-
ee can be more effective.

No one likes to hear negative com-
ments about themselves. Let’s look at
one example of feedback from Kate
about Peter:

“I believe Peter’s performance to be just
satisfactory. I believe he needs to be more
inquisitive and share his ideas and
thoughts with the team. He should also be
more exploratory, be more independent with
regard to new technologies. Though he was
somehow able to complete his work on time,
I saw him struggle on most occasions. He
needs to handle pressure better.”

Let’s look at the feedback above
closely. What does it achieve and what
does it miss? Feedback such as this lets
Peter know that his manager, Kate, is
not completely satisfied with him. It
gives Peter a sense of insecurity about
his job. As most people would acknowl-
edge, there is no bigger threat in a job
than an unhappy manager. In all prob-
ability, such an evaluation reduces the
possibility of a significant raise and
bonus.

Feedback like this misses some
important things. It gives the impres-
sion that Peter didn’t do anything of
much significance during the year. It
fails to instill confidence in him and
discourages him, which could easily
reflect on the quality of his future
work. An unhappy employee cares
more about his issues than the success
of a project.

A good dialogue should offer feed-
back that achieves two major goals: It
instills confidence in staff members by
stating positives about their work, and
it recommends areas where they can
improve.

The Right Kind of Feedback
Let’s look at another scenario in which
Kate evaluates Peter. In this version,
Kate says:

“Peter did a wonderful job as a test engi-
neer during the past year. He completed his

work on time and found good favor among
other team members. He was an important
part in the successful release of the product.
Though I am very happy with his overall
performance, I believe he still has a few
areas where he can improve. I believe he
needs to be a little more inquisitive and
share his ideas and thoughts with the team.
He should also be more explorative, be more
independent with regard to new technolo-
gies. I believe Peter has a lot of talent still
left to be unearthed. Having said that, I
believe he is an indispensable asset to the
team.”

This kind of feedback lets Peter
know that his manager, Kate, considers
him to be an important part of the
team. It lets him know that although
he is doing a good job, he has some
areas to work on. It doesn’t give Peter
the impression that he is the perfect
employee with nothing to improve
upon. And most important, it instills
confidence in Peter about his work
and encourages him to strive for more.

A key component of feedback is not
only what is said but how it is said. The
feedback above puts everything in a
very simple and concise way that is
designed to produce the most satisfac-
tory results.

While positive feedback is essential
to instill confidence and provide a met-
ric for pay raises, it does little to pres-
ent a complete picture. On the other
hand, negative feedback, by itself, can
be quite discouraging and may even
facilitate a low level of work from staff
members.

However, feedback, presented prop-
erly and including both positive and
negative components, shows apprecia-
tion for staff members’ accomplish-
ments and helps guide them toward
improving their performance in areas
in which they are less effective. And it
does so in a way that makes it palatable
for the people being evaluated. On
one hand, it lets employees know that
they are important members of the
team, and on the other it lets them
know that they can be better if they can
improve their performance in certain
areas.

Active participation by both parties
in such meetings is imperative in order
to make such meetings successful and
is likely to pay dividends in terms of
the quality of the products the team is
building. Product quality depends on
several factors, not the least of which is
the quality of the QA team. ý

MANAGING STAFF EVALUATIONS
MARCH 2006 www.stpmag.com • 31

http://www.rallydev.com/stp

w w w. s q e . c o m / s t a re a s t
REGISTER EARLY AND SAVE $200!

IN-DEPTH TUTORIALS structured in a daylong work-
shop format to provide practical, hands-on information
about specific testing issues and challenges

KEYNOTE SESSIONS given by international industry
experts from a range of backgrounds on a variety of test-
ing topics

CONCURRENT SESSIONS packed with information
covering critical testing issues giving new real-world
approaches to solving them for the beginner to
advanced testing professional

EXPO EVENT provides the latest tools, products, and
services from leading testing software and service ven-
dors to give you the solutions you need

KEYNOTE S BY INTERNATIONAL E X P E R T S

Your Development and
Testing Processes Are
Defective
Mary Poppendieck,
Poppendieck LLC

Inside The Masters‘ Mind:
Describing the Tester's Art
Jon Bach,
Quardev Laboratories

Testing: The Big Picture
Brian Bryson,
IBM Rational Software

The Software
Vulnerability Guide:
Uncut and Uncensored
Herbert Thompson,
Security Innovation LLC

Testing and the Flow of
Value in Software
Development
Sam Guckenheimer,
Microsoft

Risk-Based Testing in
Practice
Erik van Veenendaal,
Improve Quality Services BV

2006ORLANDO, FLORIDA MAY 15 –19, 2006

plus THE TESTING EXPO
MAY 17–18, 2006

The World’s Largest Software Testing Conference

SOFTWARE TESTING
A N A LY S I S & R E V I E W

SE05-STP 2/2/06 9:59 AM Page 1

http://www.sqe.com/stareast

new features are added to the product.
Without effective management, chances
are that instead of finding and fixing
defects, too much time is spent in either
trying to scale the manual testing effort,
or in maintaining automation of existing
tests. This becomes especially crucial to
enterprise software where dozens of mod-
ules need to be integrated, and features
are changed every day. A tiered approach
to testing offers an easy way to manage
complex testing, and works well with
automated tests as well as manual tests.

As the lead architect for automation
in the test development group for Sun
Java System Application Server, I
designed the workspace from scratch
during the J2EE 1.3 timeframe. The test
workspace has seen many releases since

then, and is being used by many differ-
ent groups—test teams as well as devel-
opment teams—and has the potential
to be automated with a single click.
The workspace, which is used by more
than 250 engineers, has withstood the
test of time and accommodated changes
with ease. This article offers some useful
ideas to keep in mind if you are in a
position to be designing a test work-
space.

In the four years I have been working
with the Sun Java System Application
Server Quality Engineering team, our
product has grown from a reference
implementation with average quality
standards, to a fully blown enterprise
edition and a platform edition with rig-
orous quality processes. Along with the
growth of the product, our test base has
grown tenfold, from roughly 500 simple
tests to about 5,000 complex, distrib-
uted tests that are complete transactions
in themselves, making test execution
very expensive.

Another factor that has made exe-

cuting a complete test run time-con-
suming is the number of configurations
supported. Four years ago there were
only six configurations, with two data-
bases and three operating systems.
Those numbers have grown to more
than 1,500 configurations, six databases,
13 operating systems and four machine
architectures, with support for more
browsers and high-availability features.

The tiered model was the only
approach possible for us if we were to
keep our turnaround time short and
find defects quickly. Before I explain
the evolution of the tiered model that
worked for us, it is important that you
first understand the concepts and
processes we had to come up with, and
their purpose.

Aditya Dada works in the Sun Java System
Application Server Quality Engineering
group. He is the lead architect for the
automation framework being used to test the
Application Server, and played a role in
developing quality processes for the team.
You can reach him at Aditya.Dada@Sun.com.

P
ho

to
gr

ap
h

by
 J

ef
f

G
yn

an
e

Toss a Life

Preserver to Your

QA Team With

This Automation

Framework Model

A Tiered Test Approach
To Validating Software

By Aditya Dada

During the course of
developing complex

enterprise software, the test-
ing effort usually inflates as
MARCH 2006 www.stpmag.com • 33

mailto:aditya.dada@sun.com

TEST AUTOMATION

Release Models
With the product growing more com-
plex, we needed to ensure that every
stage of product development had the
lowest possible number of defects. To
achieve this goal, the product build was
released to the test engineers and the
development engineers in many differ-
ent ways and in many different incre-
ments, so that each increment could be
used to run a more comprehensive test
suite, thereby catching defects at every
stage. The following release models
were established.

Tinderbox: What could be more explo-
sive than product stability when 200
developers are checking in code every
day? Tinderbox is the machine setup to
continuously compile, and build the
product. It tracks the changes made by
engineers to the product using the
source control and signals through its
report page. If all is green, things are OK.
If they turn red, then the build is broken
and the product cannot be compiled
into a bundle. Near the deadline, there
are times when it feels as if tinderbox is
celebrating the holiday season, with
its status going green-red-green-red-
green. And that is why tinderbox is so
effective in tracking rogue check-ins. The
gatekeeper for tinderbox monitors its
status and takes the responsibility of
involving the engineer who made the bad
check-in, and rolling back the fault.

Nightly: Each night, the release engi-
neer compiles and builds the product
and publishes the bundle on a shared
location. Anyone interested in using the
nightly bundle, say, to verify a fix to a
defect filed earlier, would access this

shared location and use the latest prod-
uct version available. A small set of tests
is run against the nightly build by the
release engineer, to catch any issues that
might have escaped tinderbox.

Weekly: Every week, the release engi-
neer compiles and builds the product
and publishes the bundle on a shared
location, much like the nightly build.
The only difference is that the release
engineer tests the weekly promoted
builds more thoroughly than the night-
ly builds, assuring that they are of rea-
sonable certifiable quality. The weekly
promoted builds are used by the quality
team to run tests on, and to report qual-
ity issues to the management team.

Milestone: Before a release of the
product to the outside world, in the
form of alpha, beta or update release, a
milestone build is published by the
release engineer. The process of pub-
lishing a milestone build is the same as
the weekly build. A milestone build,
however, usually takes place after a
code freeze, and thus it is known that
not much would have changed since
the last promotion of a weekly or a
nightly build.

Different Types of Tests
We discovered during our product
development life cycle a few years ago
that the development engineers have
very little patience. They were given a
set of tests that they needed to run
before major feature integrations to
assure that they were not checking in
bad code. This set of “one-size-fits-all”
tests took four hours to run, and as
much as the development engineers
would have liked to have run them, they
didn’t. Meanwhile, tinderbox was cele-
brating Christmas with its status lights
going red and green all the time, so we
decided to come up with sets of tests
designed for specific tasks.

Quick-Look: This set of tests ensures
that the product build is not completely
broken. They take about 15 minutes to
run, broadly touch all components of
the product, and can be run on any plat-
form with one command. The report is
generated in two formats: text, so that
the engineer can see the output of the
run immediately, and detailed HTML
format that can be accessed for failure
analysis. These tests are primarily used
by engineers to verify the integrity of
their changes. The tests are also used by
the release engineering group for night-
ly builds qualification.

When the product development is in
the early stages, very simple tests are used
for this suite. As the product matures, the
simple tests are replaced with increasing-
ly complex tests, thereby keeping the
execution time constant and ensuring
that more and more bugs are caught at
the earliest moment. These tests are
used by scores of developers, and it is
therefore a necessity that the reporting
be simple and understood by all.

Smoke: This set of tests is designed to
help the release engineering group find
problems in weekly builds. They take
about 45 minutes to run and can run on
any platform. Setup time is under five
minutes. These tests touch all compo-
nents of the product, but go a little in-
depth as well.

Basic Acceptance Tests: This subset of
the full test suite takes less than 90 min-
utes to run. The tests can be run on any
platform, and the setup time is under
five minutes. These tests examine in
depth all most-supported features and
most-supported configurations. They
are used by the quality engineering
team and the sustaining team (the latter
team maintains the product after it has
been released, mostly by fixing cus-
tomer escalations and releasing product
patches).

Full: This is the entire test base, run
by the quality engineering team on all
supported configurations. It is the most
expensive and time-consuming to run.
It takes about a day to run, and at least
two to three days for failure analysis.

Along with the above-mentioned test
types, we have two other sources of tests.

Developer Unit Tests: The automation
framework for developer unit tests is
provided by the quality engineering
team. The development team designs,
owns, creates, enhances, maintains and
executes the unit tests.

Compatibility Test Suite (CTS): Sun Java
System Application Server is built on a
J2EE standard. To ensure that the J2EE
standards are followed, and that the
application server is compliant with
those standards, another round of engi-
neers provides the compatibility test
suite, a group of tests that check all APIs
used in the product.

A Tiered Approach to Testing
Product Builds
With the product builds promoted
incrementally, and tests designed to
check all such increments, we came up
with the following strategy to catch
34 • Software Test & Performance MARCH 2006

defects whenever and wherever possible.
Catch defects with every change: Quick-

look tests are used by development
engineers before they make any change
to the product. The engineers make a
local change to the product, run the
tests, and if all pass, check the change
into the main server that holds the
product code. Coupled with tinderbox,
any basic defect that will render the
product unfit to compile or be built is
caught almost immediately.

Sometimes, the person monitoring
tinderbox also may need to make sure
that all engineers are executing the
quick-look tests before making changes
to the product. However, once the man-
agement buys into it, and once the engi-
neers themselves have realized the
importance of doing this, it can easily
become a matter of habit for the engi-
neers to run the tests with every change
they make.

For small, simple changes and defect
fixes, quick-look tests are a sufficient
check. However for major integrations,
the probability of inducing a fault is
greater, and so is the pressure on the
developers to get it right, since rolling
back would then require a major effort.
So in addition to running the quick-
look tests, developers run unit tests
designed by the developers themselves.
This increases the likelihood of finding
functional defects before major feature
integrations.

Catch defects every night: The release
engineering group has automation
scripts that compile and build the
product, and then execute the quick-
look tests. Even if a developer has
failed to run the tests and checks in
code that breaks the functionality of
the product even though it compiles, it
is caught and reported the first thing
next morning. The nightly build pro-
motions are useful for getting fixes for
those defects that prevent the quality
engineering team from proceeding
with test execution.

Catch defects every week: The release
engineering group executes the quick-
look tests, smoke tests and compatibility
tests every week to ensure that the week-
ly promotion of the product build is of
reasonable quality. This build is then
used by the quality engineering team to
run the full tests on every week. Unless
the quick-look tests, smoke tests and the
compatibility test suite pass successfully,
the release engineer does not promote
the build, and therefore, prevents the

quality engineering team from embark-
ing on a costly cycle of setting up
machines and configurations that need
to be tested.

Sometimes, when the promoted
build does not have many changes, or
when the promotion is delayed and
now demands a quick turnaround by
the quality engineering team, the basic
acceptance tests are used to make up
for lost time. This test suite is good for
improving the turnaround time with-
out compromising much on the test
coverage. It is also great for verifying
patches.

Before the basic acceptance test
suite was introduced, the smoke test
used to do its job. The basic acceptance
test suite was introduced to fill the gap
between smoke tests and the entire test
base. The smoke test, since it was used
by the release engineering group, need-
ed to be very stable. Smoke tests were
not enhanced as regularly
as tests being added to the
entire test base. This led
to a situation in which
smoke tests ran in 30 to 45
minutes, and the entire
test base took more than
24 hours, and the gap
between test coverage of
both of these tests was not
a comfortable one—that
is, a successful smoke test
run no longer guaranteed
a successful run of the full
test suite. The basic
acceptance test suite is a
reasonably big test suite
and is regularly en-
hanced, since it is not
handed over to the
release team or the devel-
opment team.

Catch defects with every
milestone: The quality met-
rics on the milestone
build are important for
the entire project team as
well as the executive management team
so that they can decide to go forth with
the release or not. The quality engi-
neering team uses the milestone build
(which is promoted by the release engi-
neer just like a weekly build), and runs
the entire test base on the build, using
the expanded test matrix that includes
the operating system, database and soft-
ware packages. By this time, most of the
major defects have been found and
fixed. Therefore, the quality team can

proceed with confidence that their
efforts in setting up machines and run-
ning the full test suite on the product
will not be in vain.

Benefits of Using the Tiered Model
By far the biggest advantage of the
tiered model is that at every step of the
application development life cycle,
some check is in place that will ensure
that defects are caught as early in the
cycle as possible. Not all test execution
resources need to be mobilized if the
smoke tests have not passed on the
build. Only when the build is of reason-
able quality (as certified by passing
quick-look and smoke tests) will the
quality engineering team come into
play. This consideration will save wasted
time and effort on builds that are unfit
to be tested against the full test suite.

Using the tiered model for a small
product that is easily tested may be

overkill. For many prod-
ucts, not all the tiers need
to be used at once and not
all tiers are always re-
quired. Besides, tiers in
themselves are not a cure-
all. However, if the prod-
uct you’re working on is
growing, you will probably
face a moment in time
when the test base you
have is no longer suffi-
cient and the one-size-fits-
all strategy is no longer
effective. If you have wit-
nessed situations in which
you and your team spent
considerable time setting
up the tests, only to find
in the first 10 minutes of
the test run that the prod-
uct being tested was dead
on arrival, then the tiered
model is for you.

The classic challenge
to catch bugs early in the
cycle is still tough in

today’s quality engineering environ-
ment. With enterprise software, the
challenge becomes even more difficult,
with dozens of modules getting inte-
grated at different times in the develop-
ment cycle. The delays raise the cost of
finding bugs, sometimes by as much as
a factor of 10. Investment in a tiered
model is a one-time expense, but in the
long run, when properly used, it will
bring down the cost of finding bugs and
pay for itself many times over. ý

TEST AUTOMATION

•
Using the tiered

model for a

small product

that is easily

tested may be

overkill.

•

MARCH 2006 www.stpmag.com • 35

For most developers and
testers, a software change
management (SCM) sys-
tem is a lot like an
accounting program. Like
an accounting program,
the SCM tool’s role is to
keep a record of what hap-
pened and to provide a
snapshot of your current
status. You record what
you changed, rely on the
SCM tool to track who has which mod-
ule checked out, and keep a tab on the
bugs to be fixed.

But, also like an accounting pro-
gram, it’s important to remember to
use the tools to help you see the big
picture. There’s no reason to get stuck
in the day-to-day details. Every so
often, whether you’re a manager or a
techie, it’s useful to step back and use
your SCM tool to get a wider view.
After all, you already have the data.
Why not use it to learn more about the
state of your project, the efficiency of
your staff and likely sources of design
problems?

For instance, Jeff Grigg, senior
consultant at Daugherty Business
Solutions in Saint Louis, looks for the
answer to the question, “Who’s had
files checked out (locked) for a long
time?” The definition of “a long time”
can vary from project to project, Grigg
says, but typically his eyebrows go up if
he sees files checked out for more
than a day on agile projects, and for
more than a week on less agile proj-
ects. As a result, says Grigg, he appre-
ciates SCM tools that can automatical-
ly send out “nag” e-mail messages to
people with long check-outs.

Says Grigg: “I’ve been on projects
where we were locked out of files
checked out by people who had left the
company months or even years earlier.
The SCM administrator can clear such

locks, but it’s better to stay
on top of these things,
rather than letting them
accumulate like land
mines.”

Jeffrey Fredrick, direc-
tor of engineering at
Mountain View, Calif.-
based Agitar Software, says
that at several organiza-
tions he has looked at
reports on branches that

are close to shipping. Doing so ensures
that the organization knows why each
file was changed. “I’ve found enough
accidental check-ins that way to make it
worth doing,” he says.

William Pietri, a software process
consultant in San Francisco, looks for
a few things using his SCM tools when
he evaluates codebases and teams.
“One big one is size of check-in by
developer. Adding or changing a lot of
lines in one go is a sign of danger.
Long intervals between check-ins are
another. A positive sign is somebody
who at least occasionally removes
more lines than they add.” According
to Pietri, frequently changed files are
often design hot spots that merit care-
ful inspection. Files that are large and
frequently changed are great candi-
dates for refactoring.

Ilja Preuss, a software developer at
disy Informationssysteme GmbH in
Karlsruhe, Germany, also looks at code
size—but in a larger sense. When
working on a legacy system, says
Preuss, “we typically expect code size
to decrease while refactoring the sys-
tem to incorporate new features.”

Beyond Size and Time
There are other hints that your SCM
tool can give you about the nature and
status of your development project
and its quality health. Says Pietri: “I
also look carefully at check-in com-

ments to give me an idea of what peo-
ple are like, but that’s more a qualita-
tive thing.”

Preuss uses his SCM tools to watch
the frequency of build failure. “We are
using Cruise Control to start, monitor
and report on automatic builds. It has a
nice chart showing the chronological
succession of build successes and fail-
ures. The patterns in that chart mostly
tell us interesting things about our
process.”

One “obvious” action is to keep
track of your project using the report-
ing tools included with every applica-
tion. However, some developers and
testers find they aren’t always the best
way to see what’s going on.

According to Pietri, exploring the
data generates more value than consis-
tently viewing the same report.
Otherwise, he says, “people are prone
to making a bad behavior look OK
from the perspective of whatever the
standard report is.” Which isn’t to
say that an SCM application doesn’t
provide useful features—Pietri uses
IntelliJ’s IDEA, and is impressed
by a plug-in that, he says, lets you
easily browse recent changes in a
variety of ways. “I find it handy for
keeping up with a team’s activity,” he
adds.

Jeanne Boyarsky, a Java developer
for a bank in New York City, uses the
information she’s gathered about past
tests to plan out new techniques. For
example, she says, the results are
examined to find out if certain types of
code haven’t been tested. Over time,
her team adds new things to monitor
and to report on. “I think this is
because we have a tendency to focus
on what is being measured. Once it is

36 • Software Test & Performance MARCH 2006

There’s Gold in Your Own
Hills–And You Can Find It

Contributing editor Esther Schindler man-
ages her own changes from her bitranch in
Scottsdale, Arizona.

BBeesstt PPrraaccttiicceess

Esther Schindler

measured, we master that, get used to
it, and go on to the next thing.”

You can also look beyond what are
typically considered SCM tools.

Mark Waite, R&D manager at
CoCreate Software in Fort
Collins, Colo., doesn’t rely on
an SCM system, per se, but
on something very like it.
“Our continuous integration
machine present hyperlinks
to the diffs which composed
each submit to the master. I
use those links all the time
to get a quick view of the
changes that happened, after
reading the submit comment
that is presented on the same
page. It is not fancy, but it eas-
ily meets 80 percent of my
needs for reports from an SCM
system.”

According to Waite, if the submit
message includes text that is recogniz-
able as a reference to a defect report,
the continuous integration scripts con-

vert that to a hyperlink into the bug-
tracking system. “It isn’t SCM (unless
you consider bug tracking, like
Perforce job tracking, as a part of
SCM), but it meets our needs to know

what is happening to our source
code.”

CoCreate has considered and dis-
cussed other measures (lines of diff,
number of submits, “turmoil”, etc.) and

decided that none of them would
encourage the behavior they want. “We
want better software, and measures that
mislead us don’t help us get better soft-
ware,” Waite says. “If we measure the

number of lines in a diff, then
we will reduce the program-
mer’s willingness to refactor.
We want them to refactor when
they find the code is in bad con-
dition. If we measure the num-
ber of submits in a day, we will
reduce their tendency to sub-
mit small test-driven changes
instead of larger chunks of less-
tested code. We want them to
be test-driven and to submit
small chunks so we can watch
each other through continuous
integration.”

While the primary reason for
using SCM tools is to manage the
process of developing and testing soft-
ware, there’s no reason not to use
them in unique ways to perform your
own kind of data mining. ý

Best
 Practices

•
Whether you’re a manager or a techie,

it’s useful to step back and use your

SCM tool to get a wider view.

•

MARCH 2006 www.stpmag.com • 37

AAddvveerrttiisseerr UURRLL PPaaggee

Eclipse Review www.EclipseReview.com 28

IBM www.ibm.com/middlewear/tools 2

iTKO www.itko.com 23

Instantiations www.instantiations.com/codepro 8

LogiGear www.logigear.com 37

Parasoft www.parasoft.com/STPmag 4

RadView www.radview.com/analyze 3

Rally www.rallydev.com/stp 31

Seapine www.seapine.com/st&p 6

Segue www.segue.com/lh?sorry 13

Software Security Summit www.S-3con.com 19

Software Testing Analysis www.sqe.com/stareast 32

& Review

ST&P Conference www.stpcon.com 39

SQS www.sqs.com 40

IInnddeexx ttoo AAddvveerrttiisseerrss

http://www.logigear.com
http://www.eclipsereview.com
http://www.ibm.com/middleware/tools
http://www.itko.com
http://www.instantiations.com/codepro
http://www.logigear.com
http://www.parasoft.com/STPmag
http://www.radview.com/analyze
http://www.rallydev.com/stp
http://www.seapine.com/st&p
http://www.segue.com/lh?sorry
http://www.S-3con.com
http://www.sqe.com/stareast
http://www.stpcon.com

In contrast to the general
technology space, software
testing has stayed relatively
free of TLAs (Three Letter
Acronyms). Occasionally
someone will sneak a “SUT”
into the conversation or
talk about the ins and outs
of “FIT.” But for the most
part, testing types like to
stick to more expansive
descriptions. While key-
word-driven testing has never turned into
“KDT” and black-box testing has escaped
a “BBT” acronym, in the past year, soft-
ware testing has been under a TLA siege.
Today’s software tester hears less about
ASQ and more about SOX, SOA, BPT
and UAT. Where have all these new terms
come from, and what can we expect the
future of testing to look like?

Both software and software testing are
undergoing a renaissance. The applica-
tions of tomorrow are being built as mod-
ular components, pieced together into
complex business processes using BPEL,
WSS or some other BPM standard. IT
departments are adopting middleware
frameworks such BEA, WebSphere or
Microsoft’s Sharepoint, and packaged
application frameworks like Oracle’s
Fusion and SAP’s NetWeaver are expand-
ing their domain to cover next-genera-
tion composite applications. The mantra
is clear: Focus on the business process,
not on the application.

Much of this is driven by changes in
IT, and IT is becoming an increasingly
process-centric exercise. Changes in IT
such as those introduced by Sarbanes-
Oxley (SOX) requirements are realign-
ing teams and initiatives around business
processes instead of applications. And if

there is any indication soft-
ware testing is being swept
along with this tide, look
around the room at the new
faces on the software testing
team.

For many traditional
software testing teams, the
business user is a new and
unpredictable variable in
the testing process. Usually
co-opted against their will

into testing, business users generally
don’t want to test, and definitely don’t
want to learn new tools to do so. But they
are a necessary and (you’ll come to find)
valuable part of your test team. As the
focus of testing shifts from software qual-
ity to business process success, business
users have become critical to testing.
They know the business.

As a software tester, it is valuable to
realize the symbiosis that exists between
you and the business user. While you
understand the applications and technol-
ogy, you probably don’t deeply under-
stand the business process and associated
data. What are the budget limits for ex-
pense reports in the marketing group?
What should happen when a journal
entry is reversed from the financials man-
agement software system? What are the
four conditions that must exist to cancel
an order heading to the warehouse? The
business user knows these processes, plus
five common ways users get around them.
But the business user does not know
the underlying application and does
not understand test automation. You do.

Here are three practical ways you can
learn to work more effectively with these
new faces on the team:

Change What You Measure: In a world

of business processes, no longer is soft-
ware quality measured by close ratios,
reopen rates, code coverage or P1-free
release candidates. The new quality met-
ric is successful business process execu-
tion. Take what you have learned from
context-driven testing and use-case
requirements and recast them in a busi-
ness light. Do you know the right
processes to test? Do you know what data
will effectively test the process?

Change What You Test: Software testing
is no longer about breaking the applica-
tion, but about testing the business
process path through the application. As
more applications are built on third-party
frameworks (such as Oracle Fusion), you
have to assume the underlying applica-
tion will work. Focus less on getting the
application to fail (for example, testing
boundary conditions for a textbox) and
more on getting the business process to
fail (for example, can someone alter a
quarterly bonus or approve a purchase
order greater than the allowed amount?).

Adopt New Technology: As business
users have become involved in the test-
ing process, automated testing tools have
evolved to accommodate our new testing
team members. New approaches such a
scriptless testing and business process
testing (BPT) are attempting to repack-
age keyword-driven testing into a user-
friendly way to entice business users into
using testing tools. By providing two dif-
ferent interfaces, one designed for the
business user and another for the tech-
nical automator, you can work together
to define the business process steps,
required data and underlying technical
implementation.

Whether you like it or not, software
and software testing teams are headed
in the business direction. Look on the
bright side. Quality assurance is finally
getting the corporate support it has
always deserved. So when the corpo-
rate spotlight does eventually shine on
you, make sure you’re TLA-ready, and
rest assured knowing one thing—there
are only 17,576 possible combinations
to learn. ý

Future
Test

38 • Software Test & Performance MARCH 2006

The Changing
Face of Software
Test Teams

Niel Robertson

FFuuttuurree TTeesstt

Niel Robertson is the CTO of Newmerix, a
software testing and change management
company based in Superior, Colo. He holds a
B.S. in computer science from M.I.T.

IS COMING TO
BOSTON IN 2006!

Mark your calendar!

November 7-9, 2006
The Hyatt Regency Cambridge

www.stpcon.com

http://www.stpcon.com

http://www.sqs.com

