Out of the Frying Pan into the Fire

An Independent Testers Transition to SCRUM

By: Robert Sabourin

I love SCRUM.  SCRUM is a software development framework which helps teams deliver working shippable code in short iterations.  I have worked in many lifecycle models from traditional waterfall methods through complex spirals to modern evolutionary approaches.  SCRUM shines in turbulent project contexts in which business, organization and technical factors are constantly in flux.

The transition to SCRUM takes many traditional independent system testers out of their comfort zone.  SCRUM challenges many common notions about development.  If you have been testing as part of an independent team you may be in for quite a surprise moving to SCRUM.  In traditional projects test teams find defects which escaped from the previous phases of development.  In SCRUM testers are part of a self organized team charged with getting things done!  Testers work hand in hand with developers and other team members.  Testers are involved in all aspects of development: planning, elaborating stories, testing,  debugging and delivering working code.
This article will describe three recent adventures I have had helping independent testers make a successful transition to SCRUM.  In each case the transition to SCRUM met with different problems as system testers tried to improve chaotic turbulent projects.  The testers took the dive from the frying pan and into the fire.  All survived with different scars and some important lessons learned.
A bit about SCRUM

I use SCRUM frameworks to enable delivery of working shippable code in reasonably short periods.  Some projects have one week iterations but most clients choose a SPRINT of between two and four weeks.
In SCRUM the project backlog is a live, prioritized, heap of potential requirements including User Stories, Capabilities, Constraints and Product Characteristics or Quality Factors.  The product owner is responsible for actively managing the backlog.  Potential entries come from customers, marketing ideas, architects and team members.  The backlog evolves as development progresses.  Backlog entries contain just enough information to prioritize them.  Entries require further elaboration to implement.  They are detailed as late as possible, often after an implementation decision is made.
The SCRUM team and product owner select high priority project backlog entries to implement in the SPRINT.  During the planning meeting developers and testers estimate and scope out the work to do.  The result is a selection of items moved from the project backlog into the SPRINT backlog.  During the iteration the team focuses on fulfilling the SPRINT backlog.
During planning testers and developers determine how to code and test each story.  The team begins the SPRINT with a strong idea of how it will end.  To paraphrase Steve Covey “Begin with the End in Mind – First things First”.

The dynamic of development is facilitated by the SCRUM master.  The SCRUM Master ensures the team is in sync.  The SCRUM master represents the team to external stakeholders.  Daily stand up meetings facilitate communications and keep team members aware of progress.  The SCRUM master will block distractions and help keep the team remains on track.  The SCRUM master facilitates and supports the team’s self-organization.

Testers work hand in hand with developers throughout the SPRINT.  Testers prepare test scenarios, test data and work with builds prepared on the fly during the iteration.  Developers are often challenged to test and testers may also be asked to develop code as part of the SPRINT.  Traditional roles are set aside as required to adapt to the work at hand.

The SPRINT ends with a demonstration of the working code which has passed all tests set out during the planning meeting.  Any changes, clarifications or refocusing have been done with full involvement of the product owner to ensure no surprises at the end.  A SPRINT retrospective is held by all team members to identify changes to improve subsequent iterations.
Role of Testing in SCRUM
I see the traditional role of testing as falling into two broad camps gatekeepers and information providers.
· Gatekeepers act as the guardian of quality and blocking the release of weak, ineffective or dangerous products.
· Information Providers offer massive objective information about the state of the project under development.  What works?  What does not work?  What bugs must be resolved?
In SCRUM some team members may be primarily testers,  some may be primarily developers.  Some may take other roles.  But all team members may be called upon to test or to support testing during the SPRINT.

The tester works with the developer.  The tester is both a consultant and active participant.  Before the code is written the tester works with the developer to decide what it means to confirm the code has been implemented correctly.  Elaboration of story tests before the coding starts is a very important blend of design and requirement analysis.  The tester is helping the developer decide what it means to fulfill the Story.
Basis of Testing in SCRUM

In system testing testers often base testware on many sources of information.  Typical sources include requirements, designs, usage scenarios, code, support information and fault models.
In a SCRUM projects the basis for testing is very different.  Strategies to assess correctness, must be determined during planning.  The amount of documentation available is minimal.  The tester must use their creativity and judgement to come up with effective ways to assess correctness.  Side by side testing may be used to identify inconsistencies and differences.  Subject matter experts and customers can help assess correctness.  Tester can use a series of heuristics to guide validation.  I have seen many cases in which the tester points out an inconsistency to the developer and then work to understand and resolve the concern.  The developer can inspect and modify code while the tester varies conditions to build a good understanding of the problem at hand.
Results of Testing

Traditional testing focuses a lot on documentation.  Test documentation is a rich deliverable which can be used to demonstrate in detail what parts of the application were exercised, what problems were identified and what other findings were observed and reported.
In SCRUM projects I see a minimum of test documentation.  When a tester finds a bug he or she works directly with the developer to resolve the problem on the spot.  No bug list is used.  The only bugs documented are those which are not corrected on purpose.
Care is taken to ensure that test documentation required to conform to regulatory requirements are kept.  For example in a medical project I worked on a detailed log of how drug data was validated was required to conform to relevant domain regulations.

The Work of Testing

I encourage SCRUM testers to hone their skills in exploratory testing.  Testers need to quickly assess the stability of the system and then explore changes or emergent behaviours.  Exploration involves navigating though the new features concurrently designing and executing tests as the tester learns about the implementation.
Testers can explore the typical, alternate and error paths associated with each story being implemented.  The typical path of buying a book on Amazon.com involves buying the book based on the title.  An alternate path would be buying the book based on author name or the ISBN number.  An error path could include attempting to buy a book which does not exist, is out of inventory or with an invalid credit card.

Testers should also focus on exploring “what if” questions about the implementation.  What if there is not enough disk space?  What if a process runs out of system resources?  What if the input is invalid?  Exploring failure modes can expose weakness in design.

I encourage testers to use automation, generally controlling the application via a well defined API, using scripted languages such as Perl or Ruby.  I avoid traditional GUI based test automation tools since updating scripts when GUIs change takes a lot of time.
Some Case Studies

I help fix broken development projects.  Several companies have consulted me recently regarding problems in their implementation of SCRUM.  Task analysis of these stories highlight insights into avoiding problems when migrating to SCRUM from traditional lifecycle models.

The following three stories are true.  Only the names have been changed to protect the innocent.  These are projects in which system testers stepped out of the frying pan and into the fire.
The Case of the Weak Pilot
TBU, a major data processing corporation, had decided to implement SCRUM in an effort to improve their failing lifecycle model.  Previously projects were implemented with a waterfall approach.  TBU has being experiencing turbulence in product requirements and new market pressures from small niche competitors who were able to come up with competitive solutions quickly.  Rework due to changing requirements was getting out of hand.  The heavy delivery cycle although rigorous was not fast enough to compete.
TBU has a small Software Engineering group dedicated to refining the lifecycle model and very excited about possibilities of implementing SCRUM.  SCRUM indeed seems ideal for TBU.  Short incremental delivery cycles with working shippable code would be an important part of meeting the new market pressures.

TBU runs several dozens of concurrent development projects. The organization has a rich history in delivering high quality solutions and has come to depend on it’s independent testing team.  Indeed the TBU system testing team has saved the day many times by finding important showstopper bugs before release.  The TBU system testing team has considerable political power and has a tendency to block initiatives which they feel will risk quality of product delivery.
After piloting SCRUM for over six months with a series of three week iterations several problems occurred.  TBU called me in to perform a task analysis and recommend changes to help put the pilot project back on track.  I looked under the hood and here is what I found.

TBU Selects a Pilot

TBU was very careful in selecting a pilot project to experiment with SCRUM.  TBU was inherently conservative.  They chose a project which would have minimal impact on the business if it failed.  
A failed pilot project would, in the worst case, involve absolutely no lost business.
TBU Kicks off SCRUM

The developers were given basic training on SCRUM.  One of the developers was assigned the role of SCRUM Master over and above his normal day by day development activities.

Testing Discovers they are doing SCRUM

After the first SCRUM iteration started the TBU testing team was informed of how SCRUM would work. Testers were not aware of the process.  There was a lot of confusion as to what was expected of testers in the iteration.

Testing Team Location
The testing team continued to work in a testing lab far away from the work area of the developers.  Testers could not easily meet or interact with developers.
Double Entry of Bugs

This was an experimental Pilot implementation of SCRUM.  The director of testing at TBU wanted to ensure that product bug or test data was not lost at the end of the project.  The testers were instructed to enter all bugs found in both the TBU traditional testing bug tracking as well as in the new SCRUM tools.  Testers managed the double entry of all bug and test data as well as redundant documentation of all test cases run.

Product Owner Absent

This was a very low priority business project for TBU.  The product owner was involved with many other responsibilities.  At the onset of the SCRUM implementation the product owner actively participated in the SCRUM planning meetings but was not available to the team whenever prioritization or clarification was needed.

Team Interrupted by Support Issues

The development team was constantly interrupted by support issues often related to basic system operation.  Developers provided second line support but were basically transferred calls directly from the help desk continuously.  The SCRUM Master was seemingly unaware of this problem which chewed by a lot of the teams development capacity.  It was treated by developers as a necessary evil and a part of life.

SCRUM Master was also a Developer
The SCRUM Master was a developer on the team.  The SCRUM Master took on important development activities as well as coordinating the team, representing the team to stakeholders and escalating issues to management.  Often the work of the SCRUM Master was conflicted.  Should he spend the time writing critical code or helping unblock another team member.  The SCRUM Master made sure the mechanics of SCRUM worked fine but he neglected ensure the dynamics of the team were fluid and effective.  Escalating a problem to management is not the same as solving it.
Tester got Builds too Late
Testers did not get builds from developers until very late into the SPRINT.  Developers delayed giving code to testers effectively implementing a microscopic waterfall model within the SPRINT.  Developers did not coordinate work with testers.

Test Automation
Very little effort was spent by testers automating tests.  Very little effort was spent by developers building a framework to support automation.  No Application Program Interface (API) was established to support automation by developers for their unit testing or by testers to help exercise the user stories.  Testability issues were not found in the project backlog and were never prioritized as part of an iteration.

Over reliance on Hardening Iterations

In some SCRUM projects an iteration will be dedicated to hardening the codebase.  A Hardening iteration focuses on bug fixing.  Hardening iterations could be used to explore how applications work on different platforms, in different development contexts or when different co-resident third party applications are running at the same time.  TBU used hardening iterations as a placebo for traditional system testing.

The Remedy

As a result of my detailed task analysis I suggested that TBU change a few things in order to implement SCRUM effectively.

1 Make sure SCRUM Master is not on critical path of project.

2 Eliminate redundant bug tracking system.

3 Have testers work directly with developers and in close proximity.

4 Do everything possible to ensure active product ownership.  Have the role seconded if the product owner is distracted by other responsibilities

5 Choose a more important project for next pilot
6 Allocate time to support issues before planning
7 Have testers engaged in the planning meeting

8 Ensure testability issues are in the project backlog.  Trust me they will bubble up in priority quickly.

What TBU is doing now?

TBU has wisely scraped the initial SCRUM pilot.  It was deemed better to try again fresh.  A group of three pilot projects are underway in a much more important product area with very active product ownership.  There is less redundant work but the corporate inertia of the traditional testing role is hovering like vultures waiting for the next weakness to be exposed.

The Case of the Distracting Documentation
BoxedIn is a major leader in the domain of information management.  BoxedIn has a long track record of leadership in their niche.  BoxedIn has a rich tradition of corporate responsiveness.  When a customer has an urgent problem or highly specialized request BoxedIn has always prided themselves in the timely delivery of a high quality solution.  BoxedIn are the “Ghostbusters” of “Information”!
BoxedIn had trouble resuming projects interrupted by urgent opportunities.  BoxedIn often shifts all developers and testers to an emergency leaving “normal” ongoing projects in a lifeless limbo.
SCRUM is a development framework that could be quite effective for BoxedIn.  During the iteration a team would be dedicated to completing the SPRINT without interruption.  New opportunities could become high priority requirements for the next iteration thus eliminating the need to constantly cancel, refocus and reprioritize corporate projects.
Before SCRUM, BoxedIn had an independent test team which relied on detailed manual scripted testing.  The team was composed of subject matter experts with a spattering of “professional” testers.  The testing team dedicated a lot of effort to ensuring several notions of coverage were maintained and documented.  Anytime a support person asked “Have you tested this feature” the system test team could respond with an answer quoting the build, tester, date, test description and even the actual test data used.  The system testing team kept track of a lot of detailed data.
The development team was torn apart and reassembled in response to corporate emergencies.  Developers were heroic knights in shining armour.  When a problem came up with put on armour and mounted beautiful white horses.  They rode into battle.  They made whatever tradeoffs and compromises they could in order to save the day.  They proudly rode home victorious, into the sunset, with yet another new configuration to maintain and support for years to come.

Development had a rich tradition of documenting and validating requirements, functional specifications and designs before diving into a solution.  Each developer had his own special style of unit testing and the developers did tons of integration testing before builds were released to the independent system testing team.
Product Managers were customers advocates.  They worked in the same team as the system testers.  Product managers gained consensus between many project stakeholders in order to prioritize requirements. 

BoxedIn Kicks off SCRUM

An urgent critical business project was selected as a SCRUM pilot implementation.  Team members were not trained.  Roles were not clearly defined.

Storyboards replaced traditional requirements for the new project.  Product managers were thrust upon the role of product owners.  Development managers were made into SCRUM masters and developers and testers attempted to deal with the new reality.

Testing Team Uncomfortable

At first the testing team was completely lost.  Where was the test documentation based on formal requirement or design documentation?  Testing was to be based on running code and a storyboard.  The team was able to use storyboards and running code to identify many important problems but they were never sure of how much testing was actually done.  They did not have a notion of test coverage.
Discovering Exploratory Testing

Testers were able to discover unexpected emergent behaviours and identified many critical bugs as they learned about the application.  The team was able to find many dozen critical bugs without having to document line by line in advance each test case or procedure.  They felt something was wrong and were afraid that they would not be able to answer customer support if queried about whether a certain feature had been tested.  The testing team was out of their comfort zone.  In order to compensate they spent many hours working overtime trying to create documentation to match the testing done.

Product Management Passive Not Active

The role of product management did not evolve into the role of product ownership.  BoxedIn Product Managers wanted to gain consensus from stakeholders before prioritizing requirements or making product decisions.  Traditional product management documents were not needed in the new process.

The system architect, development lead, product manager and SCRUM Master maintained separate requirement lists.  All were conflicting.
The Remedy

As a result of my detailed task analysis I suggested that BoxedIn change a few things in order to implement SCRUM effectively.

1 Train team in SCRUM, roles, responsibility, framework
2 Implement active product management

3 Consolidate backlog, one for project and one for current SPRINT

4 Involve testers in SPRINT planning sessions
5 Coaching testers and developers on Exploratory Testing
6 Developers should consistently use unit test framework
7 Use "stories" for requirements and testing
8 Ensure team is committed during iteration
What BoxedIn is doing now?

BoxedIn has effectively implemented SCRUM.  Testers are no longer focused on documenting the testing effort but rather they are focused on implementing exploratory testing based on storyboards and failure modes.  They use automation tools supported by the development team.  It took three iterations to get the team in sync. (one month per iteration)  The testers had access to expert coaching and some on site training.  All key team members received SCRUM training.
BoxedIn management is now using SCRUM on more projects.  They are delighted with the fact that projects can progress and deal with urgent changes without having to scrap disrupted project work.

The Case of the Graceful Goose
TimeSoft is a world leader in human resource scheduling and management software.  TimeSoft management has established an important mission to dramatically improve time to market without risking product quality.
TimeSoft was often caught following the “tyranny of the urgent” projects and opportunities leaving incomplete or inconsistently documented software in it’s wake.  Projects were constantly interrupted and the company was at risk of loosing market share to smaller niche players.

TimeSoft was forcefully merged with another related software company.  This merger raised management awareness of the software project problems and led to some dramatic changes.

Some members of the new merged TimeSoft management team had previous successes with SCRUM frameworks in other companies.  SCRUM was a natural fit for TimeSoft.
TimeSoft Kicks off SCRUM

TimeSoft management first identified internal champions to support the move to SCRUM.  They trained the internal organization leaders including all product owners, development leads and test leads.  Once this was done developers and testers were offered a blend of in house custom developed training and external public training in SCRUM.  The in house training was designed to focus developers and testers on the differences between their traditional roles and what would be expected of them in the SCRUM implementation.

With one Machiavellian fell swoop TimeSoft implemented SCRUM in all business units concurrently.  There were no pilot projects.  It was a complete commitment to change that was supported by all levels of management.  Business units had no choice in the matter.

TimeSoft adopted a philosophy of creating “barely adequate” documentation for all requirements, designs and project tests.  After each SCRUM iteration the team decided if they required more, less or different levels of detail in project documentation.

TimeSoft Pain

The transition to SCRUM was painful and abrupt.  It was very difficult for teams to deliver working shippable code for the first few iterations.  They did a lot of learning and a lot of self organizing to find the acid mix of development testing and documentation required.  SPRINT durations were varied and teams were established to implement “integration stories” so that multiple small SCRUM teams could work in parallel from a common project backlog.

During the first few SPRINTS testers relied too much on manual testing.  They also started testing too late into the iterations.

The Remedy

1 Test Automation

2 Eliminate bug report

3 Learn from other teams

4 Institutionalize learning from mistakes

Test automation was made the highest priority backlog item.  The ability to control and observe applications using automated tools enabled automated regression testing.  The effect was to have a few iterations which do not add new external features but added testing hooks and frameworks ready for action.  This lead to a dramatic acceleration in development and increased confidence in code delivered at the end of each iteration.

What TimeSoft is doing now?

TimeSoft continues to learn and adapt.  The testing team is learning new ways to apply visual models and systematically implement exploratory testing in each iteration.  The team has a wonderful dynamic. Developers and testers collaborate in all aspects of planning, coding and testing in each SPRINT.  In TimeSoft learning and adapting are critical success factors.

Some Common Threads
Testing should be an active role throughout the sprint.

Testing priorities should be in the project backlog and can include frameworks, hooks and test data.  It is also a good idea to include stress testing experiments in the backlog.

Iteration planning should decide and prioritize the focus of testing.  We should estimate testing effort based on the work to do.  Planning should help us decide what we will test and what we will not test as part of the iteration.

During the SPRINT testers work directly with developers.  Testers can coach developers in building effective unit and regression tests.  Testers can collaborate with developers as code is developed.  Testers can communicate with developers to describe, isolate and fix bugs immediately.

Testers should learn to practise exploratory testing.  Concurrently design and implement tests as you learn about the application.

Testers should learn to minimize paper work.

Make sure we learn and adapt as a result of every iteration.  SCRUM teams are self organizing and very effective at dealing with turbulence and reacting to change.  In order to avoid corporate inertia it is a good idea to continuously learn from your mistakes and to also capture excellence.

Moving from traditional models of testing to SCRUM can be exciting.  If we can overcome our fears and hesitations SCRUM can be a fun and productive way to enable the development of solid shippable “test inspired” code.  Remember it’s all about people … and the occasional bug!

About the author

Robert Sabourin, P. Eng., has more than twenty-five years of management experience leading teams of software development professionals. A well-respected member of the software engineering community, Robert has managed, trained, mentored, and coached hundreds of top professionals in the field. He frequently speaks at conferences and writes on software engineering, SQA, testing, management, and internationalization. Robert is the author of I am a Bug!, the popular software testing children’s book; an adjunct professor of software engineering at McGill University; and the principle consultant (and president/janitor) of AmiBug.Com, Inc. Contact Robert at rsabourin@amibug.com.
