
How do you know you are finished?
How do you know that the system is
ready for real end users? How do you
converge the project, delivering the
fruits of your labors and the spoils of
your blood, sweat and tears? Steve
Covey, author of “The 7 Habits of
Highly Effective People” (Free Press,
1990), might advise: “Begin with the
end in mind…First things first….”

This article talks about how you
can always be primed and ready so
that testing can start “just in time”—
at any time. We will look at how you

can cope with testing systems with
minimal specifications, no detailed
requirements and without any up-
front analysis. As a test lead, you will
learn ways to prepare for testing
unpleasant, unexpected, undocu-
mented and sometimes unwelcome
projects. As a tester, you will learn
about some techniques that can
sharpen your testing skills, helping
you to focus on finding important
and critical bugs. Developers and
project stakeholders will learn some
important techniques for collecting
and managing testing ideas and for
effectively reporting testing progress
and system readiness.

Let’s say a project has just landed
in your lap. There are no require-
ments, no specifications, no manu-
als and just a bare-bones Help sys-
tem. Your job is to provide answers.
The questions:

• What would work?
• What would not work?
• What problems would end users

experience?
• What do we know?
• What do we not know?
• What do we need to know?
You can take your magic testing

wand and, using a blend of Tinker

Bell’s Pixie Dust and the Jedi Force,
presto, you’ve got it—exactly all the
information people need to hear.

However, in reality, if you are a
typical test manager, you probably
ran out of Pixie Dust on the last proj-
ect, and you are being somewhat
overwhelmed by the dark side of the
Force. But take heart—there are
many practical things you can do to
test the software and provide tons of
great, objective information to proj-
ect stakeholders in a timely and cost-
effective manner. All you have to do
is apply the five key disciplines of just-
in-time (JIT) testing.

JIT testing works well when you
don’t have the benefit of a detailed
test analysis, test plan or test proce-
dures. JIT testing blends systematic
approaches to exploratory and ana-
lytic testing techniques with risk-based
management of testing objectives.
During a JIT testing project you:

• Discover new testing ideas on
the fly

• Triage testing ideas
• Elaborate your testing oppor-

tunities
• Implement your testing oppor-

tunities

Robert Sabourin has more than 20 years
of experience leading teams of software
development professionals. An adjunct
professor of software engineering at
McGill University, he often speaks at con-
ferences on software engineering, SQA,
testing and management issues.

For just-in-time

testing to work,

you’ve got to be ready

for it—before time

runs out. By Robert Sabourin

MAY 2005 www.stpmag.com • 13

The Lab to Have
When Time’s Short

Equipment, Preparation and Training Are
The Keys to Testing on Short Notice

P
ho

to
gr

ap
h

by
R

ob
Fr

ie
dm

an

continued on page 16 >

16 • Software Test & Performance MAY 2005

• Track testing status

Be Prepared
Before you start a JIT testing project,
the testing team should be prepared.
A JIT testing team is like an emergency
response team—always ready for action,
and always prepared for the worst that
can be thrown at it.

Imagine you and your team were a
squad of firemen prepared to put out
fires and save lives. Firemen never know
when they will be called upon. Firemen
must always have their equipment ready
and available. Firemen must always be
in great physical shape. They must be
strong, brave and of good moral fiber.
Firemen must constantly train, honing
existing skills and learning new tech-
niques. They must learn to cope with
new hazards. Firemen must learn new
ways to use the equipment they have.
Firemen study how other fires have
been dealt with, and they analyze how
in the future they might respond bet-
ter to various emergencies.

All members of the JIT testing team
must be in great shape. I’m not sug-
gesting that you run out to the gym
or do aerobics, although these do
help! I’m suggesting that the testing
team members should all be in sync
in terms of their basic testing values.
Make sure that everyone on the team
understands the role of testing in the

company. Is testing focused on gate-
keeping, or is testing focused on pro-
viding objective information about the
state of readiness of software? A dis-
connect about the role of testing could
lead to conflict during a project.

Get in sync by looking at what is
expected of the testing team. Make
sure you know what is needed in the
near future. Don’t get too attached to
any one perspective. On the next proj-
ect, you may be asked to look into
aspects that are totally contrary to what
you just completed.

Recently, I contracted to do compat-
ibility testing of two security applica-
tions running in a non-conflicting man-
ner on the same computer. Past testing
had been done with the security appli-
cations running in a conflicting man-
ner. Some testers needed time to grasp
the fundamental change in philosophy;
they wanted to study failure modes by
asking both applications to do similar
operations concurrently. The bugs
found were recorded and reported, but
were for the most part ignored. The
client wanted to see what would hap-
pen if non-conflicting operations were
performed concurrently. Testing there-
fore should not have been trying to
force failures, but rather to see if fail-
ures would be observed when users
intentionally avoided conflict. The test-
ing would have been more efficient had
testers focused on holding the same val-

ues well in advance of getting any build
to test.

The credo “on time, on quality, on
budget” is meaningless unless you are
“on purpose.” The healthy JIT tester is
agile and can turn on a dime. You must
make sure that all team members can
be interrupted from other responsibil-
ities and enjoy the challenge. A JIT test-
ing team spends plenty of time getting
ready to react to change. Team mem-
bers who do not enjoy adapting and
reprioritizing on the fly might be bet-
ter assigned to a more traditional and
predictable project. Some testers pre-
fer completing a detailed analysis
before starting to draw up a test plan.

Make sure the right testers are on
the right teams. Almost all testers I have
worked with really enjoy JIT testing
projects—just as long as everyone on
the team knows they are on JIT testing
projects. If some team members expect
to have a detailed planning and analy-
sis phase, they’re in for a big surprise.

Equipment and The
JIT Test Lab
Even if you do not have any software to
test, a JIT test lab must be primed, ready
and available. The test lab provides
resources, equipment and tools to be
used by JIT testers in action.

The successful JIT test lab is sepa-
rate from the day-to-day desktop work-
stations of JIT testers. The lab’s specif-
ic equipment needs will depend on
technology requirements, automation
needs and the number of JIT testers
who will be working concurrently.

There is no “silver bullet” JIT test lab
configuration, but there are some impor-
tant principles to keep in mind. The lab
should be set up so that testers can eas-
ily reset each computer to a known start-
ing state. If we can set the system to a
known state, then we can have more
repeatable testing. This is great for bug
isolation and confirmation of fixes.

Testers should also be able to change
configurations quickly. Different sys-
tem images should be prepared to pro-
vide important combinations of oper-
ating systems, third-party applications,
Web browsers and Internet connec-
tions. Images can be prepared inde-
pendent of the software being tested.

Computers have different hardware
configurations. It’s important to have

SAMPLE GRID OF BROWSER OS PATTERN

JUST-IN-TIME TESTING

< continued from page 13 access to some different hardware con-
figurations in order to make sure that
your software behaves well in many con-
texts. I recommend having at least one
test system at the low end in terms of
system memory, disk space, network
bandwidth and processing capacity. You
should also have access to at least one
system at the high end, with tons of
memory, massive disk space, a high-
bandwidth connection and a lightning-
fast processor. Other test machines
should match what you expect users to
have, or the recommended hardware
configurations.

Vary the hardware as testing contin-
ues. There are many bugs that can be
better exposed on low-end computers.
They sometimes challenge develop-
ment assumptions about disk and net-
work access timing. Some cool bugs
happen when data is 100 percent
cached in RAM, or when computers
are way too slow and normal delays trig-
ger timeouts.

Data layers can really benefit from
a JIT testing approach. Build up a set
of JIT test databases in advance. Set up
databases to represent different user
experiences. Vary the test database dur-
ing testing. Try having various test data-
bases available that are typical, almost
empty, and very full.

Before testing starts, you can prepare
the lab so that the system configurations
match what you expect end users to
encounter. Test with the same permis-
sions as end users. Some bugs slip by
because testers work as administrative
users instead of as restricted users.

If firewalls are going to be up dur-
ing live operation, then be sure fire-
walls are up in the test lab. Work close-
ly with system administrators, network
managers and database administrators
to make sure the systems under test are
isolated from your development envi-
ronment and match the target environ-
ments you expect your customers to
encounter.

Make sure your JIT testing lab is a
well-oiled machine. It must run smooth-
ly when a project is parachuted in unex-
pectedly. The lab’s equipment should
be available at all times. I suggest set-
ting up a 24x7 operation. Platforms and
connections should be readily available,
even if we do not know what applica-
tion will be tested or in what manner.

I suggest working with net-
work or system technicians to
continually define and build new
platform images. Anticipating
platform needs in advance is a
critical success factor. It takes sev-
eral hours to install and image a
platform, so you should careful-
ly select the platforms needed.
Take care to make general-pur-
pose images that are not locked
into or dependent on a specific
version or configuration of your
software.

Be prepared for anything.
Manage the JIT test lab and test
environments independently of
the software being tested. Treat
the lab as a service available
to—and always ready for—what-
ever projects developers may
throw at them.

Make a grid. I use a chart
(see figure, opposite) to indi-
cate which OS, browser, locale,
connection and so forth will
be available in the lab, inde-
pendent of what is being test-
ed. Rows represent test sys-
tems, and columns represent
days, or weeks, or sessions.

I make a different grid for each
aspect of the platform being varied.
So if we care about OS, browser and
locale, I’ll create three tables, one for
each. I distribute OS, browser and
locale in a different pattern on each
grid, and I use many techniques to
design these grids—for example, ran-
dom distributions, Pareto analysis,
orthogonal arrays and risk analysis.

The lab manager uses the grid to
set up systems. When testing is run,
you use the systems available on the
day of the test. Systems are varied
every day, all the time. Many of my
clients find that broad JIT platform
coverage is one of the great benefits
of this approach.

It is also critical to have a bug-track-
ing tool up and running at all times,
ready for new projects and workflows
on demand. Make sure all JIT team
members have access to the tool and
know how to use it to report bugs.

Have master templates readily avail-
able for documenting test procedures,
test charters and test notes, as well as
for reporting test status. Make sure peo-

ple know where the templates are, and
make sure team members are able to
adapt the templates to new project
needs on short notice.

Training Is Essential
In order for JIT testers to be ready for
anything, they need to keep up with
the latest techniques. They also need
to know a lot about what testing tech-
niques and approaches have been used
on other projects.

JIT testers should be encouraged
to read about testing and to share
experiences with other testers, espe-
cially people in other organizations.
Many excellent Web resources exist
that allow testers to share experiences
and to reference useful articles, and
many books have been written about
testing.

One of the best ways people can
learn is by teaching. I encourage JIT
testers to give presentations to their
peers during “lunch and learn” ses-
sions, which help make team members
aware of new techniques and approach-
es, as well as how to apply old tech-

JUST-IN-TIME TESTING

MAY 2005 www.stpmag.com • 17

niques to solving new problems.
Tutorials about technology help

testers better understand failure modes
and what can break.

The next time you send JIT testers
to a conference, ask them to give a pres-
entation about the key points they
learned. They will thereby become
more active participants in the learn-
ing experience.

Sharpen Your Skills
Constantly hone your team’s skills. Test,
test and then test some more. Never
stop testing. The best way for a testing
team to remain sharp, focused and
ready is to continue testing.

But what should you test? You can
test in order to learn. Why not test sim-
ilar applications from other vendors?
You may learn about performance and
functional characteristics from compet-
itive products and technologies. You can
test old versions of your application to
see how it behaves. You can test off-the-
shelf software your company is planning
to deploy. There are many ways to prac-
tice testing in a manner that will be of
value to your organization.

Actively try new approaches. Apply
new ways to analyze, organize or report
testing results. Try using new tools on
familiar code.

Learn how things break and how to
generate failures. Although the JIT
team may have no software in hand, it
can still take the time to anticipate the
types of problems it may encounter.

I urge JIT team members to learn
about bugs from other systems. How
do similar systems fail? What types of
bugs get inserted into projects? What
will end users dream up that will chal-
lenge the software? How will hackers
try to break through security? What
bugs in other programs could possibly
interfere with the system?

JIT testers can learn about bugs in oth-
er systems by studying relevant network
resources, and also by reviewing bug tax-
onomies. Bug taxonomies are organized
collections of bugs and failures. Review-
ing bug taxonomies can help you gener-
ate great testing ideas and can help you
anticipate how to line up new approach-
es for software coming your way.

There are many great bug tax-
onomies available to testers; some are

listed below in “References.”

Conduct Drills
It’s critical that fire departments organ-
ize drills from time to time to make sure
they’re ready, and to help the public
know in advance how to react to an emer-
gency situation. We, too, can implement
JIT testing drills and measure the respon-
siveness and readiness of the team.

A JIT test drill simulates a real test
project. Don’t tell the team it’s a drill.
Offer a deliverable, using a build from
a previous project, and then note how
long it takes for the team to get the
software test ready in the lab.

I like to use a very artificial meas-
ure that I call “the time to first bug.”
I clock how long it takes from when I
hand the CD to the test lead to when
I get the first high-priority bug report-
ed—a bug we would actually have to
fix if this were a real project.

“Time to first test” is also important.
If you are indeed ready, you should be
able to start testing within minutes.

Drills should not happen too often,
and team members should be de-
briefed after the drill. The point of
the drill is to help people be ready for
when the real thing happens.

Now You Are Ready
Being prepared is the key to effective
JIT testing efforts, ensuring that we can
find important problems in a timely
and cost-effective manner even when
we do not have detailed test plans and
have no advance knowledge of the
application coming our way.

Now that we have reviewed several
ways to be prepared for a project, we
can dive in and actually implement JIT
testing. In next month’s issue of
Software Test & Performance, we’ll cov-
er day-by-day operations and the five
keys to JIT testing, and you will learn
strategies for implementing and man-
aging JIT testing projects.ý

REFERENCES

• “Testing Computer Software,” 2nd ed., by Cem Kaner,
Jack Falk and Hung Quoc Nguyen (Wiley, 1999)

• Bug Taxonomy and Statistics, by Boris Beizer, as
amended by Otto Vinter; based on “Bug Taxonomy
and Statistics,” Appendix, in “Software Testing
Techniques,” 2nd ed., by Boris Beizer (Van Nostrand
Reinhold, New York, 1990)

• “A Taxonomy of E-Commerce Risks and Failures,”
Giridharan Vilangadu Vijayaraghavan (Department
of Computer Science, Florida Institute of Technology,
2003): http://www.testingeducation.org/a/tecrf.pdf

18 • Software Test & Performance MAY 2005

JUST-IN-TIME TESTING

