
P
ho

to
Il

lu
st

ra
ti

on
by

A
lv

ar
o

H
ei

nz
en

The Five Keys To
Successful Just-In-

Time Testing

16 • Software Test & Performance JUNE 2005

JUNE 2005 www.stpmag.com • 17

Save Precious Time
By Implementing
These Interdependent
JIT Testing Keys In
A Parallel Manner

To implement successful just-in-time
(JIT) testing, thorough preparation is
necessary. It ensures that we can find
important problems in a timely and
cost-effective manner even when we do
not have detailed test plans and have
no advance knowledge of the applica-
tion coming our way.

Last month, in “The Lab to Have
When Time’s Short,” I addressed how
to prepare for JIT testing projects and
described how to organize a testing lab
to ensure that testers will be ready for
just about anything a development
team can throw at them. Now it’s time
to explain the day-to-day operation of

JIT testing and present the five keys to
achieving success. In this article I’ll
describe how to triage testing ideas
and bugs in a systematic manner to
execute JIT testing projects success-
fully. You will learn the process and
understand how to make effective deci-
sions along the way.

The five keys to JIT testing are:
• Discover
• Triage
• Elaborate
• Implement
• Track
These keys are implemented in par-

allel, and they are interdependent.
Don’t treat a JIT testing project as a
series of events taking place in
sequence. I prefer to consider a JIT test-
ing project as a collection of process-
es that are being responded to. Events
occur, and the JIT testing team reacts
to them, responds to them and in some
cases causes them.

Discover
JIT testing involves discovering testing
ideas on the fly. As soon as you get any
information or insights about the soft-
ware to be tested, you can start build-
ing a collection of testing ideas.

The JIT test lead will manage a list
of testing ideas. No testing idea is too
naive, too silly, too big or too small.
Frankly, you should collect any testing
idea and continue to do so through-
out a project. Encourage all people

involved in the project in any way to
feed testing ideas to the JIT test lead.

The list of testing ideas is constantly
changing. A project will generally start
with an empty list. I like to kick off a
new list by holding a test idea brain-
storming session. Here is one
approach I used recently:

Invite about five different stake-
holders, each representing a different
role in the project. Examples of stake-
holders include:

• Writers
• Technical or customer support staff
• User education staff
• Project or program managers
• Product managers
• Business analysts
• Developers
• Testers
• Users
• Business stakeholders
Ask each person to prepare a list of

things they are worried about, or con-
cerns that they may have. Focus on a
maximum of five items in any of the
areas shown in Table 1.

Have a brainstorming meeting in
which the ideas are collected and
logged. Don’t spend time discussing

This article, the

second of two

parts, describes how

to discover, triage,

elaborate, implement

and track testing

ideas and bugs in a

systematic manner

to unlock JIT testing

success. By Robert Sabourin

Robert Sabourin has more than 20 years of
experience leading teams of software develop-
ment professionals. An adjunct professor of
software engineering at McGill University, he
speaks at conferences on software engineer-
ing, SQA, testing and management issues.

18 • Software Test & Performance JUNE 2005

any idea except as required to correctly
and clearly log the idea. The test lead
acts as scribe and moderator of this
meeting. During this meeting, many
new testing ideas are generated.

After the meeting, the test lead con-
solidates the list and groups the testing
ideas in a manner that makes sense for
the project. The list of ideas can then
be circulated for review and used as a
source of new testing ideas, and maybe
as a source document for further brain-
storming sessions.

Sometimes the JIT test lead must
look in the most unexpected places for
great testing ideas. I like to look at cus-
tomer service e-mail logs to get ideas
about what can really go wrong when
a system is in use.

Old and out-of-date documentation
may be a good source of testing ideas.
Even though the document is out of
date, it can still give you notions of what
may have been important to project
stakeholders at some time in the past.

This raises the
question of
whether or not
the matter is still
of importance.

The JIT test
lead manages the
list of ideas care-
fully, but with
great objectivity.
Don’t discard an
idea because it
sounds too simple
or too innocent.
Sometimes the
simplest ideas
lead to discover-
ing the most sig-
nificant bugs.

Once you’ve
compiled a list of testing ideas and
assigned a person to be responsible
for continuously collecting new ideas
and adding them to the list, testing
can begin.

Triage
Which testing idea do we want to imple-
ment first? Remember the opening
credits of the TV Series “MASH?” The
theme music “Suicide is Painless” is
playing as helicopters bring wounded
soldiers in from the front. Medics greet
the choppers and immediately assess
who will get treated with the scarce
resources available. Medical triage is
taking place. Whom do we treat right
now? Who can wait? The decision is not
an obvious one. Should we treat the
patient closest to death? Should we
treat the patient bleeding the most?
Should we treat the patient who risks
infecting others? Should we treat the
patient in the most pain? Should we
treat the patient who could help us win

the next battle, or even the war?
Medical triage focuses on making

the best decisions possible, and quick-
ly. Which patient can you help the most
with the resources available?

In the context of JIT testing, triage
is the process of ranking test ideas and
bugs in terms of importance or pri-
ority. The concept of criticality is
important, but it is not the only con-
sideration. Triage is practical. Triage
is based on reality.

In JIT testing, two types of triage
must take place frequently: test idea
triage and bug triage. I urge JIT test
leads to perform triage at least once a
day, and more frequently if required.
Ideally, triage takes place as soon as a
test idea is discovered or when a bug is
encountered. Practically speaking,
though, triage takes place when a few
bugs or testing ideas are collected.

Triaging Testing Ideas
Before you get started, it is a good idea
to make sure testing ideas all involve
about the same granularity and are
described to about the same level of
detail. Clarify ideas so that you will
understand the risks the idea would
expose, as well as the value of informa-
tion provided as a result of whether the
test passes or fails. Testing just for the
sake of testing is great for practicing
skills, but it probably should be given a
slightly lower priority than testing for
the sake of gathering information direct-
ly relevant to the go/no-go decision.

The JIT test lead should try to
ensure that testing ideas are about the
same size. I like to use a simple meas-
ure for sizing test ideas based on the
time it takes to implement them. On
my scale, the time should range from
less than an hour to two weeks. Larger

test ideas should be split up; any
smaller test ideas should be merged.

I always size JIT testing ideas
assuming that the test passes. If the
test fails, it could take well over
twice the amount of time. Actual
JIT testing time depends on the
amount of bug isolation, analysis
and reporting required.

For each testing idea, we should
try to understand the impact. The
JIT test lead should estimate the
benefits and consequences of
implementing the testing idea, as

JUST-IN-TIME TESTING

1. PROJECT CONCERNS

Usage scenarios What do people really expect to do
with the system?

Functionality What is the system really capable of doing?

Data What information does the system process,
produce or manage?

Requirements What needs is the system expected to fulfill
(written or implicit)?

Failure modes How does the system react to error
conditions, invalid data and faults?

Quality factors What characteristics should the system have
for it to be successful (usability, perform-
ance, scalability)?

Creativity Mind maps, lateral thinking, analogy, games

Experience Real issues based on past experience of
your team or others

2. BENEFITS SCALE

Benefit of implementing a testing idea
High Provides critical and timely information that we must have before shipping

Medium Provides important information that may have an influence on the decision to ship

Low Provides information that is of interest but is unlikely to block product shipment

Benefit of not implementing a testing idea
High We could do more valuable things with the available resources

Medium We could get the information we need by other means

Low Stakeholders would be missing critical information to make the ship decision

JUNE 2005 www.stpmag.com • 19

well as the benefits and consequences
of not implementing the testing idea.
I try to keep this as simple as possible.
To establish benefits, I might use a
scale like the one shown in Table 2.

As for consequences, I might use a
scale such as the one shown
in Table 3.

Simple scales are best. In
order to estimate these val-
ues, I suggest first assigning
benefits to Medium and
consequences to Normal.
Systematically review all
items to see if you should
change the values. Record
the reasons; you may not
remember why one idea
was Minor and another was
Significant a few weeks
from now, even though it is
obvious today. It’s a good
idea to consult with at least
two stakeholders when
deciding about the benefits
and consequences.
I recommend con-
sulting with some-
one who can identi-
fy the technical
risks, such as a devel-
opment lead, and
someone who can
identify the business
risks, such as a prod-
uct manager.

When collecting
this information, we
must also keep track
of the credibility of
values. Several dif-
ferent scales of cred-
ibility could work.
Tom Gilb defined
one of my favorites
in his book “Com-
petitive Engineer-
ing” (Butterworth-
Heinemann, 2005),
offering a range of
credibility from 0—
a wild guess—to 1.0,
or perfectly credible.

Before we decide
whether an idea
should be imple-
mented, we should
make sure our
understanding of the

benefits and consequences of imple-
menting or skipping the idea are based
on credible information. A High bene-
fit that has no credibility should not be
used to make a decision. I do not include
an idea until I have confidence in my

understanding of its potential impact.
You should collect test ideas con-

tinuously and do test triage frequent-
ly; I recommend that these be done dai-
ly. Work with peers representing tech-
nical or development and product

management or customer
stakeholders.

Try to keep triage meet-
ings short. During the triage
meeting you are prioritizing
testing ideas. You decide
which ideas to implement,
which ideas not to imple-
ment, and in what order
they should be implement-
ed. The order of testing is
often dictated by logistics or
operational concerns. You
may need to load data
before deleting data, so test-
ing the Delete function
might be better done after
testing the Load function,
even if Delete has a higher

priority. The JIT test
lead must be practi-
cal and able to react
to change.

Triage gives a
clear indication as to
what not to test.
Triage does not give
the exact roadmap
for running a test.
As in medical triage,
the first test run will
be that of the high-
est priority, and one
that can be run
because we have the
skills and resources
available to do it.

The JIT test lead
must reject testing
ideas when the
cost/benefit ratio
does not make any
business sense for
the project. The test
lead should consider
alternatives such as
implementing part
of a test idea, a dif-
ferent idea with the
same benefit, or
more of the idea
when a significantly
higher benefit can

JUST-IN-TIME TESTING

3. CONSEQUENCES SCALE

Consequence of implementing a testing idea
Significant This testing idea would be extremely expensive to

implement or it would not allow other important
activities to take place

Normal The costs are typical of similar testing opportunities

Minor Very low cost; no impact on other activities

Consequence of not implementing a testing idea
Significant We would be missing information required to make

the decision to ship the product

Normal Neutral position; if we did the test we would find
the information useful, but we could probably ship
without knowing and react to related concerns at a
later date

Minor Does not add or take away information, even
though the results might be interesting

4. ELABORATING TESTING APPROACHES

Testing Approach Elaboration
Scripted A test procedure or automated test script is created. A

strategy to assess correctness is defined. Parameters to
observe are established. Preconditions are determined.
Platform requirements are stated. As appropriate, test
cases are defined and test data is collected.This can apply
to testing functionality, capabilities, usage scenarios or data.

Exploratory Systematic exploratory testing involves concurrent test
planning, test design and test execution. An exploratory
test charter is defined.The scope of testing is defined.
Templates and tools for capturing testing notes and
observations are established.

Experiments Generally used to expose the system to harsh or stressful
conditions.Testing experiments are run in close collabora-
tion with development, system administration or database
management teams. I use the same basic structure as a
high school chemistry experiment. I start with an
objective, make a hypothesis, define the equipment required
and the testing methods, and then stimulate the system and
observe the behavior as the system operates. I try to confirm
or refute my hypothesis. I try to account for my observa-
tions. Expertise is required to stimulate the system in a
meaningful way and observe useful characteristics while
the test is running.

Implicit A test idea can be implemented implicitly by making it a
natural part of some other testing activity. For example,
one testing idea may be to see how the software behaves
when using different Web browsers. You do not have to
make a special test to see how the software behaves when
the browser is changed. Instead, you can vary browsers
while other testing continues. Another common example is
printer support. You can try using different printers during
different parts of functional testing. Implicit test ideas give
valuable information at minimal or no incremental costs.

20 • Software Test & Performance JUNE 2005

be achieved. In the triage meeting,
make sure you consider any changes in
the project’s business or technical con-
text. If you do this daily there should
be little change, and when there is
change you can react quickly.

New customers have a tendency to
shift priorities. Technological uncer-
tainties are discovered as testing and
development progresses. Triage should
consider new test results, new bugs iden-
tified and new testing ideas. If the con-
text has changed, then past priority
decisions may no longer be relevant.
The JIT test lead must review past deci-
sions whenever context changes.

As test ideas are triaged, so, too,
must bugs be triaged. It’s an important
part of JIT testing to ensure that the
bug priority, severity and reporting
schemes are well established in advance
of a project’s start. The JIT lead must
make sure that all team members
adhere to the bug management work-
flow. I generally recommend that bugs
be triaged immediately before any new
test ideas are triaged. Bugs will influ-
ence the priority of testing, so it makes
sense to look at the bugs first. A possi-
ble agenda is:

1. Business context changes
2. Technical context changes

3. Test results
4. Bug triage

Elaborate
Once we have decided which testing
ideas are important, and we know
which testing idea to implement next,
it’s time to assign a testing idea to a
tester. Test assignments come in a few
basic forms. In my experience the bulk
of testing ideas are implemented as:

• Scripted tests
• Exploratory tests
• Testing experiments
• Implicit tests
Before a test idea can be run it must

be “elaborated.” I define the “elabo-
ration” state of a test as a way to see if
the test is defined enough to be imple-
mented by a qualified tester. How a test
is elaborated depends on the type of
testing used to implement the testing
idea, as shown in Table 4.

In advance of testing, you should
have good examples available for each
of the possible testing approaches. I do
not suggest you use the examples as
templates, but rather as inspiration
when you’re confronted with a new JIT
testing opportunity.

Implement
Although implementing a testing
opportunity is where the real work of
a JIT testing project actually takes place,
this stage probably requires the least
amount of description. I try to manage
JIT testing work so that there is fre-
quent interaction between the JIT test
lead and individual testers. A typical
workflow is shown in Table 5.

Track
I encourage the JIT test lead to provide
all project stakeholders with a steady
stream of “massively objective” infor-
mation about the state of the JIT testing
project and the state of the system being
tested. My experience is that JIT test
results should be communicated in real
time as the project progresses. Infor-
mation about test status should be at the
fingertips of all key stakeholders.

I usually summarize JIT project sta-
tus with information about test ideas,
test results and a bug summary.

I prepare a list of implemented test
ideas using a spreadsheet or database
program. For each test idea I note the

JUST-IN-TIME TESTING

5. IMPLEMENTATION WORKFLOW

Kickoff Confirm that the test objective and context are
understood
The JIT test lead meets with the tester and ensures that the
test objective is understood, business and technical contexts
are known and deliverables of the test are agreed to. At this
point it is important to make clear what the focus and
purpose of the test are.

Prepare Ensure that hardware, software and tools are OK
The JIT tester makes sure all facilities and tools needed to
run the test are available and operational.

Run Test
The test is run. It may be an experimental, scripted or
exploratory test. In each case, different deliverables are
prepared. Generally, results will include the pass-fail status
and a summary of bugs found. Some bugs may be “on the
rails,” or a clear failure based on the testing objective and
purpose, but some bugs may be “off the rails,” that is, bugs
that are observed in the system under test but not directly
related to the objective or purpose of the testing idea.

Complete Wrap up, report bugs, collect notes and data
The tester wraps up testing and leaves the system in a
controlled state. Make sure all data and images are
captured.The tester reports all bugs and ensures that
testing notes are clear and complete.

Review Review results with lead
The tester reviews the results with the JIT test lead immedi-
ately after completing the test.The JIT test lead needs to
gain insight into the state of the system under test.The
JIT tester must know about the nature of bugs found, what
works, what fails, what is shaky and what new opportunities
and testing ideas may have been identified. It is at this
review session that the JIT test lead confirms notes and
makes sure that bug reports are clear and understandable
to others. (Make sure information is crisp and relevant; this
is sometimes called “bug improvement.”)

Follow up Reassess goals and react to new info
The JIT lead follows up by revising the test status
information and adjusting test priorities. New testing ideas
are added to the collection. A new test triage may be called
for, especially if important new information is brought to
light.The project’s status is communicated to all stakehold-
ers.The JIT lead must react to the new information
immediately.

JUNE 2005 www.stpmag.com • 21

elaboration state and the test results.
Table 6 shows a sample spreadsheet
used to track testing ideas.

This example project is tracked on
a build-to-build basis. Some JIT testing
projects are tracked on a daily or week-
ly basis.

The “Testing Approach” column is
used to record how the testing idea will
be implemented.

The “Elaborated” column indicates
the elaboration state of the testing idea.
If a testing idea is ready to be run, then
the elaboration status is set to Yes. If a
testing script or procedure is being
designed, then the elaboration status
is set to In Progress. If more informa-
tion or system access is needed, then
the elaboration status is Blocked.

The “Test Results” section includes
Never, Pass, Blocked and Fail. Never
means a test has never been run on any
build. Pass means the test was run and
passed; it means no on-the-rails bugs,
although some off-the-rails bugs may
have been reported. Passing a test does
not mean the software is bug-free.
Blocked implies we could not run a test.
A dash (–) indicates we did not run a
test. Note that not all of the tests are
run on all of the builds. Fail means a
test has exposed on-the-rails bugs.

The “Latest” column indicates the
status of the test the last time it was run.
It may have passed on one build and
then failed on a later build.

The “Run Count” column indicates

the number of times a test was run.
The JIT test lead also reports on the

totals. In this case we have one fail, four
passes, two tests ideas have never been
run and one test idea that is blocked.
Two of the test ideas are implement-
ed but are implicit rather than explic-
itly run (for example, by varying plat-
forms or system hardware).

Bug Summary
The JIT test lead must keep project
stakeholders aware of the number of
open bugs on the project. One way to
illustrate the bug status is to provide a
trend curve indicating the number of
high-priority bugs over time. Every day,
the JIT test lead records the number
of open bugs that must be corrected
before the project can be shipped.

A Handoff From Developers
It’s a good idea to set up a simple pro-
tocol with the developers to ensure that
the system has structural integrity before
accepting it into the JIT testing cycle.
Each build is given a simple smoke test
by the development team, in the devel-
opment environment, before being
handed off to the testing team.

The testing team runs exactly the
same smoke test in the testing lab as
soon as the build is delivered. If the
smoke test passes in the development
environment but fails in the testing
environment, then there is probably
a build integrity problem that must be

resolved before accepting the new build
into test.

The testing team should continue
to test with the latest build. JIT testing
does not stop because a broken build
is delivered.

Ending a JIT Testing Project
The nature of a JIT testing project is that
we gain insights into the system as we
test it. We always have a list of testing
ideas along with knowledge of the test
elaboration status, the pass-fail status
and the open bug status. The decision
to ship is based on this information. The
role of the JIT testing team is to provide
the information to help stakeholders
make an informed decision.

You will never be able to run all the
test ideas you have collected. You will
never be able to show that a piece of soft-
ware is bug-free, and no amount of test-
ing will ever expose all defects. If you
begin with the end in mind, you know
at the beginning how you will end. The
end of a JIT testing project is a result of
triaging testing ideas and bugs.

We know we can ship when the bugs
that remain are the bugs we can live
with. We know we can ship when the
tests we have run give us confidence in
the information we have. And we know
we are willing to live with the conse-
quences of not running the tests that
remain and all of their possible undis-
covered bugs.

At least for now. ý

JUST-IN-TIME TESTING

6. SAMPLE TEST IDEA TRACKING SPREADSHEET

Identifier Summary Build 00A Build OOB Build 00C Build 00D Build 00E Latest

TID0010 Test idea 001 Script Yes NEVER PASS - FAIL - FAIL 2

TID0020 Test idea 002 Explore Yes NEVER - PASS - - PASS 1

TID0030 Test idea 003 Experiment In Progress NEVER - - - - NEVER 0

TID0040 Test idea 004 Implicit Yes

TID0050 Test idea 005 Implicit Blocked

TID0060 Test idea 006 Experiment No NEVER - - - - NEVER 0

TID0070 Test idea 007 Explore Yes NEVER - PASS FAIL PASS PASS 3

TID0080 Test idea 008 Script Yes BLOCKED - - - - BLOCKED 0

TID0090 Test idea 009 Script Yes PASS PASS PASS PASS PASS PASS 5

TID0100 Test idea 010 Explore Yes NEVER BLOCKED PASS BLOCKED PASS PASS 2

Testing Idea Test ResultsTesting
Approach

Elaborated Run
Count

