WITH THE

B

FLOW



an effective bug triage system gy ROBE

\oliE

PAUL TAYLOR/GETTY IMAGES

-

Process & Techniques

ONE OF THE FUNDAMENTAL QUESTIONS
in software engineering is “How do we
know when we’re finished?” Whether
you are just putting bug tracking in
place or are experiencing the mid-proj-
ect requirements turbulence of a dy-
namic business context, an effective
bug triage process can help you answer
with confidence: “We have completed
the development and testing we set out
to complete. We have explored any

new risks we dis-

LNFO T0 GO covered, and the

= An effective bug flow bugs that are left are
requires buy-in from all
of the stakeholders. bugs that are ac-

= Setting the priority and ceptable to us...at
severity of bugs is a busi-

ness decision. least for now!”

o
"~
"

RTSAB

”’

”

www.stgemagazine.com NOVEMBER/DWOB STQE 45

b



Process & Techniques

It’s not important which bug triage
system you use—just that everyone un-
derstands and buys into it. What fol-
lows is my seven-step process.

STEP ONE

IDENTIFY KEY
STAKEHOLDERS

Stakeholders can be found in every nook
and cranny of a software development
project. Never be too certain that your
list is complete. For instance, in one dy-
namic e-commerce company, a senior ex-
ecutive I had never met decided to hero-
ically micromanage a software project.
He had a bug list from his discussions
with executives at the client. We were not
allowed to work on anything unless it
was to correct a bug in his list. We had to
abandon some excellent software prac-
tices to follow his directives.

The mistake we made was failing to
identify this executive as a stakeholder.
Had he been identified earlier, he could
have influenced the bug decision-making
process before it was in use, rather than
as a crisis late in the project.

Therefore, find all of your stake-
holders. Talk to project managers, ac-
countants, and business unit managers.
Involve customer support, product man-
agement, sales, operations logistics and
information technology. Investigate who
key stakeholders were on past projects.

Keep in mind that stakeholders can
be working in the interest of your busi-
ness, your client, yourself, or some other
group. If you find many differing and
conflicting interests, consider resolving
them early through a little informal ar-
bitration over lunch. If things block up,
escalate the problem to management—
you have found an important project
obstacle early!

STEP TWO

LEARN HOW DECISIONS

ARE MADE

Take a look at how decisions are made.
Wias there a formal change control board
defined for the last project? Ask specific
questions about the past: What happened
last time? Was this the right thing? How
should it have happened? Ask probing
questions about the future: What if this
type of problem happens? Who should
we call? Who makes the final decision? If
that person makes the final decision, will
someone else come around and try to
undo the decision? A bug flow is efficient
when key stakeholders buy into the
process, key decision makers buy into

46 STQE

DESCRIPTION

1 Isolate Bug Bug Finder Attempt to repeat bug in a small
number of steps
2 Enter Bug Bug Finder Enter bug description (including
detailed description, severity,
consequences, how to repeat,
version, build, platform, date,
time, operating details as required)
using bug tracking system
3 Review Bug Bug Finder/ Have peer or test lead review
Tester bug description for clarity and
completeness
4 Prioritize Bug Bug Review During bug review meeting, assign
Committee a priority to the bug (several bugs

will be reviewed in one meeting)

5 Assign Bug Development

As priority dictates, assign bug

Lead to a developer for correction and
rework
6 Fix Bug Developer Correct bug
Confirm Tester In next build, including bug fix,
Bug Fix confirm the bug is corrected
without unexpected side effects
Close Bug Tester Close confirmed bugs in defect
tracking system
Reopen Bug Tester/ If bug is not confirmed, reopen
Test Lead for subsequent reprioritization,

and if necessary, reassignment

Table 1: An example of a typical bug flow, showing steps and responsibilities

how key decisions are made, and deci-
sion making is delegated to people who
can make timely decisions based on rele-
vant business context.

STEP THREE

DEFINE A BUG PRIORITY

AND SEVERITY SCHEME

Now you are ready to define a relevant
priority and severity scheme for the proj-
ect. Each and every bug we find and
triage is assigned a priority and severity.

Bug Priority answers the questions
“Should we fix this?” and “By when?”
There are dozens of possible prioritiza-
tion schemes. I encourage teams to im-
plement as simple a priority scheme as
possible. (For some sample prioritiza-
tion schemes, see the accompanying
sidebar on page 47.)

A common mistake is to add “condi-
tionals” to the priority ratings. For ex-
ample, “Px—Fix if possible” is quite
common. My experience with “fix if”
priorities is that early in the testing cycle
a lot of bugs are assigned a “fix if” prior-
ity. Then as time runs out, they are re-

NOVEMBER/DECEMBER 2003 www.stgemagazine.com

classified as “fix later.” The decision to
fix a bug is indeed a business decision. By
including conditional priority, the deci-
sion is now being delegated to someone
who will define what “possible” means.
Is this the intent? To quote Yoda speak-
ing to Luke Skywalker in The Empire
Strikes Back, “No! Try not. Do or do
not. There is no try.”

A more effective prioritization scheme
would encourage making a decision
about bug priority, while also allowing
for future changes to the decision if the
business or technical contexts change. If
you must put conditional decisions in the
prioritization scheme, then every effort
should be made to minimize the use of
them! I have seen projects where over
80% of the bugs are classified “Fix if
possible”; this is a sign of weak, ineffec-
tive decision making.

Bug Severity defines how much dam-
age a bug can cause. Bug severity is a
very important input to the prioritiza-
tion decision. Severity alone cannot be
used to decide bug priority; decision
makers should also take care to review



WORKING WITH

Process & Techniques

_PRIORITY AND SEVERITY

The simplest prioritization scheme | have successfully
used in small commercial projects (5—-10 team members)
is as follows:

P1 (High): Fix bug before commercial release
P2 (Medium): Fix bug in future commercial release
P3 (Low): Do not fix bug

However, more granularity is often required. A more typi-
cal example would be as follows:

P1: Fix bug immediately

P2: Fix bug before next build

P3: Fix bug sometime before commercial release
P4: Fix bug in a future commercial release

P5: Do not fix bug

One of my favorite severity schemes defines four levels of
severity based on whether a client can work around or
avoid the problem:

$1 (Showstopper): All of product inoperable, crashed,
data destroyed

$2 (Major): Feature is inoperable —no workaround

$3 (Minor): Feature is inoperable —workaround exists

$4 (Cosmetic): Cosmetic — does not impact operation

Bug quadrants are an important tool to help focus testing
teams on finding bugs that matter.

Ql bugs are bugs that are both high priority and severe.
Testers should be encouraged to try to identify as many Ql
bugs as possible. These are the bugs that will affect the
bottom line for the product. Qll bugs are less severe than
Ql bugs but are high priority. Perhaps the priority of the
bug is dictated by a special need of the client—for exam-

QI QII
HIGH PRIORITY HIGH PRIORITY
SEVERE NOT SEVERE

QIIT
LOW PRIORITY
SEVERE

QIV
LOW PRIORITY
NOT SEVERE

ple, a spelling mistake is usually low severity, but on sensi-
tive legal text it may be a very high priority.

Bugs in Qlll are of a special class; these are severe
bugs that we do not have to fix right away. Perhaps we
can sell the product to customers not requiring features
with Qlll bugs for the first commercial drop of the prod-
uct. Perhaps we can exclude problematic platforms for the
sale—if the application crashes on a specific version of
Windows, we can simply not allow it to be used on that
version.

Bugs in QIV are low priority and low severity. A team
should avoid having too many bugs in this quadrant. If
there are large volumes of low-severity bugs, they may
have a very negative impact on the project and should
thus be assigned a higher priority. Testers should report all
QIV bugs observed, but test plans should not focus test-
ing effort on finding this class of bugs.

| encourage testers to be aware of which quadrant the
bugs they are finding belong to and to focus on identify-
ing Ql and Qll bugs whenever possible.

A bug can jump between quadrants as a result of
changes in the business or technical context of a project. |
worked on a project where over 170 High Priority bugs
were reprioritized to Low Priority (Fix later) because of a
business change for the product’s main customer. They
decided to support a completely different database plat-
form that was much better integrated with our code base.
Thus all database bugs from the previous vendor were re-
assigned to a new priority.

You should continuously monitor the important busi-
ness drivers on the project. VWWhenever an important busi-
ness driver changes, you should review recent relevant
bug prioritization decisions. In light of the new business
conditions, should we still be fixing these bugs? Are there
bugs that we decided not to fix which must now be ad-
dressed?

It is possible for the same exact technical bug to be in
any of the four quadrants as a result of changing busi-
ness conditions! One example is a bug that results in a
system crash when a certain function F is used. The bug
is reported as High Severity and assigned to Ql. The client
decides that the module with the bug will be replaced by
a third-party product, so the bug is downgraded to Qll.
Product management decides to deprecate the feature,
so the bug shifts all the way to QIV! Then our company
merges with the company that makes the third-party
product the client wanted to use. Now we will have to in-
tegrate their code into our function F in some future re-
lease. The bug jumps back to Qlll.

www.stgemagazine.com NOVEMBER/DECEMBER 2003 STQE 47



Process & Techniques

the consequences of not fixing the bug,
the technical risk of fixing the bug, the
possible side effects of fixing the bug,
and the relative cost of fixing the bug
now or later.

Bug severity is often indicated by a
simple numeric scheme with a reasonable
scale that is well understood by all team
members. When determining the bug
severity scheme, it is a good idea to find a
relevant example for each severity level
from past projects. Past examples can
also be used as a teaching aid. (See the
accompanying sidebar on page 47 for a
sample scheme.)

If you are comparing bug data be-
tween different projects, be sure that the
severity schemes are similar. This allows
apples-to-apples comparisons. Make
sure that all testers are taught how to
correctly classify severity. It is a good
idea to collect representative bugs for
software failures of all possible severi-
ties. These can later be used to train
testers and to teach stakeholders to bet-
ter understand what bug data really
means. (They will have a better mental
image of what a bug count of 27 S2
bugs means if they know what an S2
bug is!)

STEP FOUR

DEFINE STEPS TO TAKE
WHEN A BUG IS FOUND

The credo “Never Lose a Bug!” should
echo through the halls! All team mem-
bers, testers, developers, writers, man-
agers, analysts, and subject-matter ex-
perts must know what to do if and
when they spot a bug. A simple list of
step-by-step instructions will suffice.
Table 1 on page 46 shows one set of
steps used on a real project (this is by no
means the only way to do it).

This simple process will take place for
all bugs reported. Bug Isolation and Bug
Reviewing should be performed with
support of the more experienced team
members. Prioritization and Assignment
are done at a bug review meeting. Tight
coordination between developer and
testers takes place between when a bug is
prioritized and when a bug fix is con-
firmed. The table shows the main re-
sponsibilities—there may be many more
interactions than indicated.

STEP FIVE

BUILD A STATE MODEL

OF THE BUG FLOW

Bug flows can be described using state
transition diagrams. A state transition di-

48 STQE

REFUSE

MANDATE

FAILURE

CORRECT

Figure 1: A state transition diagram provides an unambiguous description of the

bug flow. This diagram shows all the possible dispositions of a bug, the flow

between states, and the actions that drive state changes.

agram uses circles to represent system
states, and lines to represent how states
can change. The life of a bug can be
viewed as its transition through all of its
different states of existence.

The state diagram in Figure 1 repre-
sents a simple bug flow. A bug can be in
any of the seven states. These states are
defined by reviewing all possible prioriti-
zation states of a bug. In our example,
once a bug is entered into the defect
tracking system, a peer or test lead
checks it. After a successful review, the
bug is in the reviewed state. A bug triage
meeting determines whether the bug
should be fixed or not. If a bug should be
fixed, it is assigned to a developer, con-
firmed to ensure it is fixed, and subse-
quently closed. If the developer cannot
reproduce the bug or for some reason re-
jects the bug (perhaps too much technical
risk), then the REFUSE transition moves

the bug from the assigned state back to
the reviewed state, from which it will be
triaged again!

You must first identify all possible
states of a bug. Consider starting before
bug prioritization and ending with bug
fix being confirmed. Draw arrows indi-
cating all possible state transitions.
States are labeled with the name of a
state, and arrows are labeled with the
action (generally a verb) which trans-
forms the bug from one state to the next
state. Take care to use unique names to
define each state and each state transi-
tion. At any time, every bug can only be
in one state. Project management can
track the number of bugs in every state
verses time, which leads to a traditional
bug graph representation. Note that
during different development phases,
different bug flows may be required, so
you should create a separate diagram

Create a Common Understanding

It is a good idea to ensure that team members share a common definition
of what a bug is. In some organizations, a bug is any concern that could
impact the success of the project; in others, a bug is a behavior which
does not conform to requirements. No matter what your definition, ensure
that all team members are in harmony. Generally it is better to report a bug
than to risk not reporting it. If someone ever hovers on the boundary of
whether a system'’s behavior is in fact a bug, they should be encouraged
to report the bug. Another gem of folk wisdom—"“It is better to have a re-
dundant bug than to not have it in the list at all” —should be drummed into
all team members. Encourage everyone to report the bugs they observe
and to properly follow the bug reporting steps.

NOVEMBER/DECEMBER 2003 www.stgemagazine.com



page 49
full-page ad
Trackgear



Process & Techniques

for each case—i.e., system testing, inte-
gration testing, acceptance testing, and
live operation. (For more on the differ-
ent kinds of bug flows, see this issue’s
StickyNotes at www.stqgemagazine.
com.)

STEP SIX

ENSURE THAT KEY
STAKEHOLDERS BUY INTO
BUG FLOW

Now that a bug flow has been described
and diagrammed, it is important to ex-
plain it to all stakeholders and to find out
if everyone accepts the process and is
willing to follow it. Review the priority
and severity definitions, steps to handle a
bug, and bug flow state transition dia-
gram with all stakeholders. You may
need to perform a group presentation.
Bring examples to demonstrate severity
levels clearly. Make clear who will be del-
egated the power of assigning priority to
individual bugs. As required, you may
need to add or remove states in the bug
flow. Business-sensitive stakeholders will
value simplifications and state reduc-
tions—you must keep the system simple
but meaningful!

One problem you may run into is that
two stakeholders request opposite
changes to the bug flow. For example,
one stakeholder may want to review bug
priorities before another, and vice versa.
When stuck with this political problem,
reflect upon how great it is that you are
resolving the issue before you have even
processed your first bug! Confusion and
power struggles hurt in-progress projects,
but also force tough decisions to be made
up front. You do not have to give in to ei-
ther side—just be tactful and bring both
opposing stakeholders into a joint meet-
ing. Work from the common goals of the
parties to isolate specific problem areas,
always demonstrating their importance
to the business success of the project. If
the parties cannot resolve the issue, then
they are clearly blocking your project.
You are well within your authority to es-
calate the issue. Usually the conflicted
stakeholders will renegotiate a reason-
able solution that can be built into the
workflow definitions! (Do this as early as
possible.)

Some technically-oriented testers may
be shocked at my suggestion that busi-
ness people and external stakeholders
should have a say in how bugs are prior-
itized! I must emphasize that the deci-
sions of which bug to fix and which bug
to keep are among the most important

50 STQE

A Warning about Tools

A warning about bug track tools: | recommend that you define the bug
flow first, then choose a tool that can effectively implement that bug flow
in your organization. Before you buy any defect tracking tool (or software
development tool for that matter), make sure it can implement your work-
flow and actually work in your environment.

factors to deciding go (or no-go) on
shipping a software product. Bug work-
flow and triage is where such key deci-
sions are made. If they are made with the
full awareness of key stakeholders, they
will better reflect the business goals and
values. The most effective workflows I
have used involve decisions made with
three people at the table: a product man-
ager representing the customer and busi-
ness goals; a development manager rep-
resenting the technological aspects of the
project; and a representative from the
testing team with a massive dose of ob-
jective input! (The CFO does not have to
be in the triage meeting, but the CFO
should buy into and support the busi-
ness process.)

Share the state model and prioritiza-
tion/severity schemes with all team mem-
bers. Make sure that every single person
on the team is aware of how bugs will be
tracked, prioritized, reviewed, triaged,
assigned, and confirmed. Make sure the
staff knows that while not all bugs will
be fixed, all bugs will be dealt with fairly
and professionally throughout the proj-
ect. Explain with examples the meaning
of all severities, and encourage staff to
bring new instructive examples to your
attention whenever they are uncovered
during the project. Remember to teach
new team members the bug flow when
they join the team.

STEP SEVEN

ADAPT BUG FLOW AS
REQUIRED TO REFLECT
BUSINESS AND ORGANIZA-
TIONAL CHANGES

If you have identified the key stakehold-
ers and adapted the bug flow based on
stakeholder feedback, you are ready to
use the bug flow! That doesn’t mean
you’re done. Be prepared to change it as
time goes on. Many software develop-
ment organizations are merging or re-
structuring to reduce cost and increase
competitiveness. Whenever an organiza-
tional change takes place that influences
your project, even indirectly, it is a good

NOVEMBER/DECEMBER 2003 www.stgemagazine.com

idea to review the bug flow. Are you con-
sidering the input of a stakeholder who is
no longer relevant due to new responsi-
bilities? Are you missing input from new
stakeholders recently assigned to your
business area of importance? Are you go-
ing to adopt new development methods
as a result of a merger, or will you be us-
ing different release and deployment
strategies as part of a business re-orienta-
tion? When the world changes around
your project, take the time to make sure
that the bug flow is still rational, reason-
able, and relevant!

THE MORAL

OF THE STORY

Bugs are not good or bad. Some bugs
are important and have a high priority;
some bugs are dangerous and have a
high severity. Setting the priority and
severity of a bug is a business decision.
Always review previous decisions in
light of changing business context, and
remember to ensure that the staff as-
signing priority and severity are aware
of all relevant business drivers for the
project.

A prioritized bug flow that everyone
agrees on can allow you one day to say
with confidence, “We are ready to ship.
The bugs that are left are bugs we can
live with—at least for now.” STQE

Robert Sabourin (rsabourin@amibug.
com) is an author, lecturer, and president
of AmiBug.Com, Inc., a firm specializ-
ing in software management consulting,
teaching, and professional development.
Robert is the author of the popular
children’s book 1 Am a Bug (ISBN 0-
9685774-0-7), which explains what
SQA folks really do at work.

STICKYNOTES

For more on the following topics
go to www.stqemagazine.com

= The elevator parable
= Important bug flow differences



