
Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 1

Exploring, Discovering and Exterminating
Bug Clusters in Web Applications

Kim Davis, MyVirtualModel, Inc.
kim@myvirtualmodel.com
www.myvirtualmodel.com

Robert Sabourin, AmiBug.Com, Inc.
rsabourin@amibug.com

www.amibug.com

Quality Week - 2001
San Francisco

AmiBug.Com, Inc.

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 2

Overview

• Method Motivation & Project Presentation
• Risks: Business, Technical
• Potential Areas of Instability & Test objectives
• Exploratory Testing & Mapping
• From Mapped Areas of Instability to Bug Clusters
• Finding, Prioritizing and Exterminating Clusters
• Conclusion
• Future work
• Web References

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 3

Motivation

• 80/20 Rule: Can we save lot’s of time and effort
by focusing on larger structures of bugs, i.e. Bug
Clusters?

• Apply successive approximations
• Identify the cluster – without finding all of its

individual bugs!
• Identify, Prioritize and Exterminate at the

Bug Clusters Level
• Fix bugs that you did not find!

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 4

My Virtual Model Community

• My Virtual Model Concept & Community
• 3D, Web and Fashion Industries Collide
• Visualization
• Personalization – Virtual Identity
• Network of Interoperating Web Sites –

Mobility
• Affiliate Services & E-Commerce

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 5

My Virtual Model Community

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 6

Business Risks

• Fixed timeframe projects tied to industry dates for seasonal
collections of garments

• Community is large and demanding in terms of
consistency, performance, reliability

• It has to work and it has to be on time
• Functionality always tied to market “$$” related revenues

e.g. a new type of model can be introduced to target a new
market (for example Tall Men)

• New business model is evolving as project continues!
• Organizational change
• Requirement turbulence

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 7

Example Project

• Constraint from moment clothing in-hand to
release - max 8-12 weeks

• Community per client includes 100s of thousands
of users - target large retail clients - we will get
many many hits fast

• No forgiveness in retail fashion business - (nor
Web business)!

• Trading down functionality to hit a release target
is problematic

• Business requirement - release date moved up!

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 8

Technical Risks
• Technology change Management

– Fast technology churn
– Use technologies in production environments with

limited knowledge of baseline
– Limited time for evaluation, training

• Staff change
– Programmer not familiar with entire code base - could

miss something
– Programmers not familiar with “live” production

parameters - even if the developer knows how to make
it work on his own machine (NT vs UNIX)

• Requirement turbulence

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 9

Example Technical Risks

• Many parallel activities not easy to synchronize
• New application server framework, business logic

layer
– From JServ to JRUN

• New presentation layer
– to JSP model

• Some reused code at risk because running in a
new context

• Changed requirements on technologies used

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 10

Testing Objectives & Risk
Project Name:

Author: KD
Revision: 3/30/01

ID Summary Note Proposed
Owner

Develop-
ment
Lead

Product
Manage-

ment

Testing
Lead Average Business Technical

Proj-HLTO-
01 Functionality

Suitability, Accuracy,
Interoperability, Compliance,
Security

Product
Management 30 20 25 24

Loss of confidence -
High Maintenance &
patches

High Maintenance

Proj-HLTO-
02 Reliability Maturity, Fault Tolerance,

Recoverability
Product

Management 20 30 30 27 Loss of confidence -
High Maintenance

High Maintenance

Proj-HLTO-
03 Efficiency System behaviour over time,

Resources Usage
Development
Management 20 25 15 22 Loss of confidence -

High Maintenance
High Maintenance

Proj-HLTO-
04 Usability Understandability,

Learnability, Operability
Product

Management 10 15 20 14 Loss of user interest -
Loss of customers

Proj-HLTO-
05 Maintainability Analysability, Changeability,

Stability, Testability
Development
Management 10 5 5 7 Maintenance Difficulty

Proj-HLTO-
06 Portability

Adaptability, Installability,
Conformance,
Replaceability

Development
Management 10 5 5 7 Difficulty to get clients

on different platform

Lack of interoperability

Total 100 100 100

Consequences of Failure
(Point Form List)

Relative Importance
Suggested % of Total

Testing Effort

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 11

Potential Areas of Instability

• Functions particularly related to new
technologies

• New stuff or changed stuff (Turbulence
Index)

• Functionalities added after design due to
business change

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 12

Exploratory Testing Approach

• “In operational terms, exploratory testing is an interactive
process of concurrent product exploration, test design and
test execution.”

- James Bach

• Test lead triage testing in chunks building up a “map”
• Assignment based on looking for areas of potential

instability
– Looking for clusters - observe aggregate results from

all testers

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 13

Exploratory Testing

Kick Off

Prepare

Run

Complete

Review

Follow Up

- Test Lead assigns chunk to tester
- Based on suspected areas of risk
- Based on where holes exist in map
- Clarify goals, forms, deliverables

- Tester prepares for assignment
- Reviews status of system
- Ensure software and tools at hand
- Identifies Oracles, Gets comfortable

- Test for one chunk (90-120 min)
- Explore, identify new areas
- Identify discrepancies, bugs
- Does system behave consistently?

- Tester collects notes
- Ensure forms are completed
- Note possible new testing directions
- Is bug data reasonably complete?

- Tester and Test Lead
- Reviews all deliverables
- Any changes to form required?
- Discuss any points of interest

- Test lead adds information to map
- (Data repository & file system)
- Correlate all information
- Identify clusters candidates with Dev

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 14

Finding a Cluster from Bugs Identified

• How should you/could you or do you identify a
cluster?

• Correlation between bugs identified to get an
understanding of whether they can be grouped

• Mapped Areas of Instability define clusters
composed of the bugs that have natural affinities
of causes
– Requirement or Technology Turbulence
– Copy-paste and reuse of code without checking

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 15

Clusters of Bugs

• What makes a Bug Cluster?
• Example Metrics Definitions

– Functionality - several bugs related to same
functionality are discovered

– Reliability - different functions fail in similar way
– Efficiency - several operations are similarly using

resources inefficiently
– Time - several content sources are out of sync

• Could indicate a process-related problem

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 16

Cause of Clusters

• Test team works with developers to find common
root defects behind bug cluster
Ex:

Faulty_module.class

Send
Model

Change
Prefs Delete Access Modify Create

Explored and Mapped

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 17

Prioritize Based on Business Impact

• Instead of prioritizing on a bug by bug basis, we
work on a cluster (on a higher level)

• Less red tape
• Nice for speed!
• Can

– Fix cluster
– Do not fix cluster
– Treat bugs individually
– Detailed analytic testing

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 18

Practical Results

• Extermination techniques, developers and testers
working together (fast)

• Try to identify probable root causes of sets of
seemingly related bugs – Use empirical knowledge
– Testers and developers worked well together
– Improved developer awareness of tester role
– Buy-in to approach

• Analysis based on root cause identified an
additional 30%, so for every 10 bugs identified 13
were fixed

• Continue using technique!

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 19

Exploratory testing
Building a Map

Business
Decision Making

Bugs Similarities
Root Cause Analysis

Model

Risks, Areas of Instability, Test Objectives

Find Bugs
Understand Application Identify Clusters Prioritize Cluster

Fix cluster/
Do not fix cluster/

Treat bugs individually/
Detailed analytic testing

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 20

Conclusion

• Relevant in our context
• Shortening bug management overhead
• In less time we were able to deal with more

bugs
• Flexible Method – Hybrid
• Buy in at all levels!
• In a turbulent environment, this will likely

be a good approach on future projects

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 21

Future Work ...

• As method is applied to more projects we will
better document and generalize it

• Exploratory Testing can be replaced by more
analytical approaches as feeding method

• So far - developers, testers and management all
like method - and the results

• Cluster Testing Method’s Effectiveness &
Efficiency – Using it to its fullest potential –
Limits of applicability

• Will evolve based on REAL WORLD needs

Friday, March 30, 2001 © Kim Davis, Robert Sabourin, 2001 Slide 22

Web Reference Slide
• www.satisfice.com

– James Bach web site, exploratory and risk based
testing

• www.testing.com
– Brian Marick web site, articles about exploratory

testing
• www.amibug.com

– Robert Sabourin Web site, various presentations
• www.mvm.com

– My Virtual Model Web site
• www.stickyminds.com

– Much relevant content

