Knowing the Limits of Your Applications
Will Give Your Project a Winning Season

26 e Software Test & Performance FEBRUARY 2007

By Rob Sahourin

Bugs—l love to find bugs! In my testing adven-
tures, I’'ve found a lot of great bugs. Many of

the most important ones, I call boundary bugs. I’ve found
many boundary bugs that are of great value and potential
consequence. When I teach software testing, which I do with
thousands of students and conference attendees every year,
I often take a simple survey. I first ask, “How many of you use
equivalence partitioning to develop tests?” Only about 5 per-
cent raise their hands. My next question is “How many of
you use boundary analysis to develop tests?” Invariably, a
large percentage—generally about 80 percent—respond
with a resounding “Yes, I know boundary analysis and prac-
tice it frequently.”

Finite 8oyl

I've found that many of my students know what boundary
testing is, but are able to discover, explore and expose only
a small number of potential boundary risks. So let’s start to
remedy that shortcoming right now. I'll examine three
sources of boundary risks: those found in requirements,
those related to data input, and those exposed by the pro-
cessing, storage and manipulation of data. But first, I'll need
to lay some groundwork.

Traditional Gridiron Testing
Equivalence partitioning is a basic test-design technique I first
learned from Glenford Myers in his 1979 book “The Art of
Software Testing” (Wiley released a second edition in 2004). It
involves three simple steps. First, identify variables that influ-
ence the behavior of the application under test. Next, define
subsets of all possible values each variable can take that the
application will handle the same way. These are called equiva-
lence classes. Finally, for each equivalence class, choose a repre-
sentative sample value and use it to test the application.
Equivalence partitioning applies a blend of common sense
and set theory to testing problems. The basic assertion of this
approach is that the information you get from testing any one
member of an equivalence class is the same, so you need not try
more than one representative sample to test the entire class.
Traditional boundary analysis derives from Myers’ notion
of an equivalence class. Many equivalence classes have
extreme values, minimum values, maximum values or edge
conditions. We can define these extrema as boundary con-
ditions, and use them to develop test cases. I call this tradi-
tional equivalence-class boundary testing. In my basic approach,
for each boundary of the class, I choose three values to test
the application:
1. A value exactly on the boundary
2. A value immediately within the boundary
3. A value immediately outside the boundary
So for each equivalence class, I can choose up to six tests

FEBRUARY 2007

o Y < higfn

LI

to study the behavior of the application at the variable’s

boundary. Some classes have no boundaries, and some class-
es have only one. For example, the class of positive numbers
has no upper boundary, and the class of negative numbers
has no lower one. Classes about membership comprise lists
of objects that do have boundaries, but in an insurance
application, the class of vehicles with four-wheel drive is an
equivalence class without boundaries.

I found many bugs at the boundaries of equivalence class-
es. These are due to the nature of requirements, design, pro-
gramming and testing. Requirements that correctly delimit
ranges of values are hard to elicit and unambiguously
describe. Boundary bugs will continue to exist in software
projects, but there are specific techniques you can use to
tame them.

Study the Rule Book
Some software engineering techniques can help reduce the
injection of boundary bugs into software. Software inspections
can help validate our requirements, and decision tables can
help clarify business rules. However, any two software develop-
ment professionals referencing the requirements can inter-
pret them in different ways.

Ambiguous requirements are full of boundary risks. Is a
range inclusive or exclusive? Do ranges of values overlap?
What does it mean for a value to be in range? How many dig-

www.stpmag.com ¢ 27

Photograph by Brandon Laufenberg

>

its of precision do we consider in
defining continuous numeric ranges?
A classic boundary-requirement bug
occurred in a communications analysis
project I managed a couple of years
ago. We had a very small team and pret-
ty clear requirements. Table 1 depicts a
decision table that is typical of
an application’s requirement
statements.
This decision table was used
as part of the rate-management
software requirements. The
table indicates the discount
rate, invoicing frequency and
reporting frequency as a func-
tion of the type and volume of
traffic. Volume bands are desig-
nated up to the amount indi-
cated in the row labeled
Monthly Volume; the assump-
tion is volume up to and includ-
ing the value indicated in the
table. So when the table indi-
cates 100,000, it implicitly refers to traf-
fic up to and including 100,000. The
volume band labeled 1,000,000 implies
traffic greater than 100,000 and up to
and including 1,000,000 and so on.
Although this might be an implicit
ambiguity, it was common practice on
the project. Bugs started showing up
when we realized that developers were
making different assumptions about
bound of the
Different developers were responsible

the lower range.
for the business logic behind rate com-
putations, invoicing and report gener-
ation. Furthermore, different testers
were responsible for testing the
reporting and invoicing software.
Testers responsible for invoicing also
validated discount-rate computations.
Requirements were elicited from dif-
ferent stakeholders depending on traf-
fic type. Different product managers
were responsible for the voice and
data business segments, creating sever-

al possible points of misinterpretation
of the requirements.

Each potential misinterpretation is
a potential source of a requirement-
based boundary risk. Requirement
analysis could have misinterpreted the
client needs. Requirement analysis of

Any musinterpretation

can cause a requirement-based

boundary risk.

voice could have interpreted needs
differently than a data analysis.
Business logic, reporting and invoic-
ing developers could have interpreted
stated requirements differently, and
invoice testers could have interpreted
stated requirements differently from
reporting testers.

I like to draw a tree of potential
boundary misinterpretations, using a
simple mind map as in Figure 1(page
30). The tree has many branches: The
requirement may be wrong, the devel-
oper may misinterpret the require-
ment, the tester may misinterpret the
requirement, or the test results may be
misinterpreted. Only one of the 32
paths through the mind map repre-
sents a correctly implemented, validat-
ed and verified boundary condition.
Some cases are particularly difficult,
and all derive from the nature of
equivalence-related boundaries.

To avoid misinterpretation, we must

TABLE 1: PLAYBOOK FOR COMMUNICATION TRAFFIC

Condition

Monthly

Volume 100,000 1,000,000 110,000,000 >10,000,000 | 100,000 1,000,000 | 10,000,000 | >10,000,000
Traffic Type | Voice Voice Voice Voice Data Data Data Data
Action

Discount

Rate 0% 10% 15% 20% 0% 12.5% 15% 17.5%
Invoice Quarterly [Monthly | Monthly | Weekly Monthly [Monthly | Weekly Weekly
Report Monthly [Monthly |Weekly | Weekly Monthly [Weekly | Weekly Weekly

28 e Software Test & Performance

develop effective boundary tests for
equivalence-class boundaries that vali-
date requirements, confirm the devel-
opment understanding of
requirements, confirm the testing
team’s understanding of requirements
and use testing oracles—all strategies
that help to avoid misinterpre-

tation.
To validate requirements, I
generally use software inspec-

team’s

tions to ensure consistency
across the sources used to elicit
them as well as consistency in
the way the requirement is
described.

To confirm development
understanding of
ments, I often use peer reviews
and unit-testing approaches
that challenge assumptions
developers may make about
boundaries. I ensure that test-
ing includes cases exactly on

boundaries, as well as immediately
within and outside of boundary condi-
tions.

To confirm testing understanding
of requirements, I review test against
requirements and test against design,
challenge validation of requirements,
perform an ambiguity review and use
peer reviews of test cases developed.

To help avoid misinterpretation of

TABLE 2: FIRST STRING

Minimum Length String

require-

Minimum -1 Length String

Minimum +1 Length String

Maximum Length String

Maximum -1 Length String

Maximum +1 Length String

test results, I try to find testing oracles,
the strategies that help to avoid misin-
terpretation, based on requirements. I
use multiple approaches to verify
results, and different sources of infor-
mation to validate correctness.
Requirement-based variables can
take on many different forms. Each
type of variable has a different type of
business logic-related classes, which in
turn have different types of boundaries.

First String Variables

String variables are quite common in
applications and generally represent
the names of objects or some sort of
tests associated with objects. String
variables generally have boundaries

FEBRUARY 2007

represented by their length, with min-

TABLE 3: FIRST-ROUND DATE BOUNDARIES

imum and maximum lengths defining

boundary test ranges. Testing bound- Date Component Low Boundary Upper Boundary
aries of string variables generally Day First day of month Last day of month
involves the six boundary conditions Month First month of year Last month of year
listed in Table. 2.) Year First year of century Last year of century
Date and time variables often have . A . :
R Year First year of millennium Last year of millennium
basic components of day, month, year,
. . Year Leap year
hour, minute, second and fractional
second. Precision is an important ele- DE LCETD CEm A
ment of a date requirement that helps Hour First hour of day Last hour of day
to identify boundary test cases. Hour First hour of morning Last hour of morning
For example, if I had to test a data Hour First hour of afternoon Last hour of afternoon
variable defined with a precision of days, - Leap hour forward
I woulg t’est a day before and a day after Hour Leep oy [ea e
the minimum date, and a day before - Leap day forward
. rwar
and a day after the maximum date. If Y A
the precision were a millisecond, the Day Leap day backward
equivalent boundary tests would be on Minute First minute of hour Last minute of hour
the boundary and a millisecond before Second First second of minute Last second of minute

or a millisecond after the boundary
date. Sub-second computations are com-
mon in real-time systems related to
event synchronization and telecommu-
nication or network switching.

Table 3 summarizes common date
boundaries to consider when the date
is a variable influencing the behavior
or processing of an application.

Testers involved in the infamous
Y2K testing initiative undoubtedly will
be able to identify dozens of other rel-
evant date and time boundaries based
on a single variable.

Web-based
applications, transactions that origi-

With international

nate in one time zone can be
processed in another. The same
instant in time can be represented by
different hours, minutes and days,
depending on the originating and
processing time zone.

Boundaries can exist in dates when
transactions take place in different
time zones. Boundary conditions can
include cases in which transaction tim-
different
Transaction timing also can “cross the

ing occurs at times.
top” of an hour; for example, the
Newfoundland time zone is offset by
30 minutes from the Atlantic time

zone. Transactions can span morning
to afternoon, through days, weeks,
months, years, or even centuries.

Game-Day Boundaries

Date and time ranges can be defined
either with a starting point and an
ending point, or with a starting point
and a duration.

Starting and ending point. Bound-
aries exist in the absolute definition of
the starting and ending points, as well
as in the relationship between starting
and ending points. For boundary con-
ditions in these cases, I like to look at
starting date equal to ending date,
starting date just before ending date,
and ending date just before starting
date.

Starting point and duration. Bound-
aries exist in the absolute definition of
the starting point as well as the
absolute definition of the duration.
Requirements should indicate mini-
mum and maximum values for the
duration.

Generally, date ranges run into
boundaries when they cross day, hour,
morning, afternoon, year, century or mil-
lennium boundaries. If the starting and

ending times or dates cross time-related
boundaries, there is a risk that business
logic and computations that aggregate
transactional date may allocate transac-
tions to different time periods.

Compound Fractures

Compound variables are those that influ-
ence an application’s behaviors in
combination. For example, take a look
at the dimensions and weight of an
envelope used to help compute
postage. Let’s say the size of the enve-
lope is comprised of length, width,
thickness and weight.

I can identify boundaries based on
the extreme values allowed for each
component of the envelope’s size, but
I can also define the extremes that are
the maximum of all components or
the minimum of all components. Look
at the object of the testing: the enve-
lope. What’s the smallest envelope?
What’s the largest? These define the
boundaries of an envelope.

In some cases, the business logic is
defined in such a way as to necessitate
testing the boundaries of each compo-
nent individually and in combination.
But when I test compound variables, 1

TABLE 4: PRESSURE IN THE POCKET

Test identifier Length Width Thickness Weight
Envo01 Minimum Minimum Minimum Minimum
Env002 Minimum - £ Minimum - £ Minimum - E Minimum - £
Env003 Minimum + £ Minimum + £ Minimum + £ Minimum + £
Env004 Maximum Maximum Maximum Maximum
Env005 Maximum - E Maximum - E Maximum - E Maximum - E
Env006 Maximum + E Maximum + E Maximum + E Maximum + E

FEBRUARY 2007

www.stpmag.com ¢ 29

ﬂ

focus on the boundaries of the objects
being tested. I test boundaries with six
test envelopes, as shown in Table 4. E
represents the smallest unit that depends
on the requirement for precision.

Discrete and Continuous Offense

Boundaries exist for some equivalence
classes of variables. If a variable is rep-
resented by a whole number or an inte-
ger value, or can be mapped to a whole
number, it’s known as a discrete variable.
An example of a discrete variable is the

number of items purchased in a shop-
ping cart application.

On a recent project, I performed a
series of tests to confirm the business
logic for order processing as a function of
inventory in stock. To test the variable for
order entry, I had business rules defined
for a minimum and maximum order
quantity as well as these rules related to
the amount of inventory:

1. Order quantity must be greater

than zero

2. Order quantity must be less than 256

3. If order quantity is less than or
equal to inventory, the order is
processed

. If order quantity is more than or
equal to inventory, a partial order

N

is processed, sufficient inventory
is reordered and completion is
suspended until inventory arrives
Implementing these four rules put
several interesting boundaries into
play, as depicted in Table 5.
Note that in determining the inven-
tory quantity for testing, the boundary

FIG.1: ONE PENALTY-FREE PATH TO THE END-ZONE

Boundary Risk Misinterpretation

30 e Software Test & Performance

Test Right

Correctly Interpreted Results

Test Pass
Incorrectly Interpreted Results

Development Right

Correctly Interpreted Results

Test Fail

FJ

Incorrectly Interpreted Results

Test Pass
4|Incorrectly Interpreted Results
Test Wrong
Correctly Interpreted Results
Test Fail
Incorrectly Interpreted Results
Requirement Right
Correctly Interpreted Results
Test Pass
Incorrectly Interpreted Results
Test Right
Correctly Interpreted Results
Test Fail
Development Wrong Incorrectly Interpreted Results
Test Pass
4|]ncorrectly Interpreted Results
Test Wrong
Correctly Interpreted Results
Test Fail
4|]ncorrectly Interpreted Results
Correctly Interpreted Results
Test Pass
4|Incorrectly Interpreted Results
Test Right
Correctly Interpreted Results
Test Fail
Development Right Incorrectly Interpreted Results
Test Pass
Incorrectly Interpreted Results
Test Wrong
Correctly Interpreted Results
Test Fail
4|]ncorrectly Interpreted Results
Requirement Wrong
Correctly Interpreted Results
Test Pass
4|]ncorrectly Interpreted Results
Test Right
Correctly Interpreted Results
Test Fail
Development Wrong Incorrectly Interpreted Results
Test Pass
4|]ncorrectly Interpreted Results
Test Wrong
Correctly Interpreted Results
Test Fail

Incorrectly Interpreted Results

FEBRUARY 2007

SPONSORED WHITE PAPER

You see them all the time: advertisements, newsletters, press releases and

email campaigns offering you BIG software discounts, migration utilities or

lofty promises to end your software licensing woes. Let's face it; many

software vendors spend a lot of time and money just baiting customers to

switch to their products. While most savvy consumers can see through the

hype, we thought it helpful to dispel some myths and point out some realities.

Myth #1: Cheap software =
Lower TCO

Reality check: The total cost of ownership {TCO) of
testing comes from many sources, including: software
licenses, maintenance, implementation costs, human
resources, hardware, the efficiency of the testing
process and more. If a vendor promises to lower your
TCO through cheap software, think twice. If you don't
tread carefully, the results could actually be quite
expensive. As a general rule, steer clear of those who

offer no real value proposition beyond fire-sale

discount programs or permanent “limited” promotions.

Myth #2: Migration utilities =

Easy migration

Reality check: You've seen advertisements for the
migration utility du jour. They promise simple migration
from one vendor’s offering to another. What they
DON'T mention is the significant switching costs
associated with the deployment and customization of
the new solution, the migration of existing data and
retraining of staff to use new offerings. Don't let the
conversion utility hype distract you from seeking the

true capabilities and the intrinsic value of the software.

o

SPONSORED WHITE PAPER

Myth #3: The price of the software is
the most important selection criteria

Reality check: Try this quick experiment: Go to any
résumé posfing website and enter the name of your
testing software in the search field. The results can show
whether local skilled resources are available for that
product. The fact is, labor cost is often the most
expensive ifem in your budget. Selecting widely used
technologies increases your chances of getting the right

people from the local talent pool.

Myth #4: All QA and testing
software companies are more or
less the same

Reality check: Just because a vendor makes a claim in

advertising doesn’t mean it can bring great quality

management software to market. Scrutinize the

company carefully —you often get what you pay for.

Good questions to ask are:

® Has the company been in the quality assurance {QA)
software business for at least 10 years?

* Has it been able to consistently innovate and deliver
new and useful technologies to market?

* Has it set the tone in QA and festing software or just
followed others?

* How many customers does it have in production?

* Does the company have a vision fo which it is
executing, or is it just producing tactical tools?

Great differences among vendors exist in this space;
identifying those differences will benefit you. Choosing
the right partner can spell the difference between

success and failure.

© 2007 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change
without notice. The only warranties for HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Myth #5: All QA and testing
solutions are more or less the same

Reality check: No two organizations handle quality
testing the same way—so it's important that your
products can address the complexity of real-world
enterprise environments. Use the following simple
criteria to test broad vendor claims:

* Does the software have proven ability to scale from

individual, project-based testing to centralized,
global festing centers of excellence?

* What are the depth and breadth of environment
support for applications?

* Does the testing software help you fest service-
oriented architecture {SOA) as well as custom and
packaged applications

* What is the quantity and quality of the ecosystem for
third-party tools available for the solution?

* |s this software likely to grow and expand to support
new technologies and new practices as they become
available?

The HP Software difference
HP Software brings together 16 years of Mercury

experience in Quality Management software with the
full range of HP solutions and support. While most
vendors make claims, HP Software delivers. We are the
market-share leader in key categories including
performance testing {77 percent, Yankee Group) and
automated software quality {56 percent, IDC). More
customers have selected HP Software Quality
Management software and services than all other
vendors combined. Why2 Because our software and
services are known to bring real value to customers, and

that's not just a bunch of hype.

Get the details
Get the big picture, and the advantages of HP Software

become increasingly clear. For more information and

materials, visit www.oplimizetheoutcome.com.

o)

invent

TABLE 5: INVOKING PENALTIES

Test Condition Below On Above

Identifier Boundary Boundary Boundary

Tidoo1 Rule 1 (INV>1) =1l 0 1

Tid002 Rule 2 (INV>257) 255 256 257

Tid003 Rule 3 and 4 INV INV INV
(INV a specific value AMOUNT AMOUNT AMOUNT
between 1 and 256) -1 +1

Tid004 Rule 3 and 4 (INV=0) -1 0 1

Tid005 Rule 3 and 4 (INV=1) 0 1 2

Tidoo6 Rule 3 and 4 (INV=255) 254 255 256

Tid007 Rule 3 and 4 (INV=256) 255 257 257

Tidoo8 Rule 3 and 4 (INV=257) 256 257 258

related to inventory varies depending
on the amount of inventory. For rules 1
and 2, I would test the boundaries by
ensuring the associated inventory was
greater than quantity.
However, for rules 3 and 4, I would
explicitly vary the inventory and the
order quantity.

Continuous variables are those that

the order

can have any possible real number in
some range. Continuous variables have
the interesting characteristic that there
always exists a third value between any
two possible values. There are an infi-
nite number of possible values. If you
look at the Windows Calculator and try
to test the square root function, you’ll
observe that any real number can be an
input value. The valid range of values
for the square root function is positive
real numbers including zero.

When you’re working with systems
that have a continuous range of values,
it’s easy to identify the boundary values
but it becomes challenging to identify
values a little above and a little below
boundaries.

This is where the notion of precision
is critical. An application’s precision
may be indicated in the requirement
documentation or may be part of the
system design. To unearth the relevant
information for boundary testing, you
must identify the smallest value that the
application can process such that if you
take a continuous variable, the follow-
ing is true:

Let EPSILON be the smallest repre-
sented value such that

VARIABLE + EPSILON > VARIABLE

VARIABLE - EPSILON < VARIABLE

If the variable can have different
magnitudes, the EPSILON value is gen-
erally defined to be a function of the
magnitude of the value. For example, if
the value is a very large number such as
10#%100 (1 followed by 100 zeros, a.k.a.

FEBRUARY 2007

a googol), the value of EPSILON may
well be a value of 10*30. However, if
the same variable has a value with a
smaller number like 1,000, EPSILON
may well be defined as 0.000001.
Therefore, boundaries of continuous
variables depend on the magnitude of
the variable, and different values of
EPSILON should be used for different
orders of magnitude. I run into the
issue of different EPSILON values when
involved in scientific cal-

culations.

Calling Plays From
The Sideline

So far we’ve explored
boundary risks related to
variables derived from
software requirements
and business rules. These
boundaries are critical
and can be identified and
explored based on discov-
ering and understanding
what the application
should do.

In parallel, I generally
identify a series of bound-
ary risks that relate to
input—how variables get
populated by data before
processing begins.

Variables get data
from many different
sources. Users can enter
it though user interfaces,
dialogs
and controls. Messages
can be exchanged between processes
and applications, and also between the
operating system and the application.
As well, variables may be populated
from data sources, persistent storage,
files, databases and registries.

The way variables get populated
leads to a series of potential boundary

forms, menus,

The input
boundaries
found in testing
products are
often the most

critical.

risks that are different from those relat-
ed to business rules. The input bound-
aries that I find in testing products are
often the most critical.

Whenever a form is populated on a
screen or dialog, operators are asked to
enter data before processing can occur.
The fields on the display may have differ-
ent restrictions or rules based on user
interface requirements. Some of the
common constraints I run into in discov-
ering input boundaries include the fol-
lowing: For string length, what is the
acceptable length of a field? For white
space, how much leading and trailing
white spaces are allowed? Are there
restrictions in the number of digits? What
is the number of significant digits or pre-
cision; for example, how many values
after the decimal point are computed?

For each of these constraints, I con-
sider identifying boundaries related to
what the rules are and what I can do. For
example, a field may expect a user name
of between six and 12 characters. There
may be user interface constraints that
restrict the field length to
this range.

I also ask myself what I
can possibly enter into
the field; for example,
can I enter a string of
length 0 (null string)?
Can I enter a long string
longer than the accept-
able range? Can I enter
an extremely large string
(perhaps a BLOB [Binary
Large Object]) into the
field? The boundaries
related to these extremes
could expose potential
of the
application that can lead
to discovering security
breaches.

failure modes

Numeric precision in
input fields relates to the
number of digits that will
be
Interesting

actually processed.
boundaries
show up based on the num-
ber of significant digits.

For example, if an
application processes values of up to four
decimal places, I would identify input-
based test cases related to entry of data
with three, four or five decimal places.

I might also see if the application
attempts to validate, process or ignore
these values. If the values are validated,
I'd expect the application to warn the

www.stpmag.com * 33

w

user that an attempt was made to
exceed the maximum precision sup-
ported. If the application processes the
values, I'd expect it to round them up
or down to the nearest value of the
appropriate precision.

For example, 10.01256 with four digits
of precision rounds up to 10.0126. When
the application does the rounding, it
becomes interesting to test and ensure
that processing is of the rounded value
and not the entered value. Processing for
10.01256 and 10.01259 both round up to
10.0126 and thus should generate the
same result. If not, you may have identi-
fied a precision-related boundary bug.

Memory, Storage and Processing:
A Head Coach’s Headache

The way data is stored in computer
memory or databases can lead to inter-
esting boundary conditions that are
independent of the other two types.

Table 6 lists valid ranges of values for
common data types in the ANSI-C pro-
gramming language.

If we can find out how an integer is
stored in memory, it may be interesting
to explore how the application behaves
when the boundaries are determined
by the range of the variable type.

We can learn about the types of vari-
ables for any string, numeric, currency,
date or other compound data type by
consulting with the software develop-
ers, checking database schemas or actu-
ally reviewing the code. If a quantity
value is stored as an unsigned short
integer, I'd want to explore how it
processes values around the lower pos-
sible boundary, 0, and the higher possi-
ble boundary, 65,635; perhaps compu-
tational overflow or underflow bugs
would occur.

TABLE 6: ZONE DEFENSE

Type Min Max

unsigned char 0 255

short int -32,767 32,767
unsigned short 0 65,535

int -32,767 32,767
unsigned int 0 65,535

long int -2,147,483,647 2,147,483,647
unsigned long 0 4,294,967,295

Boundaries related to data type are
also significant when programming lan-
guages attempt to convert data from one
type to another. In C, an integer variable
may be cast into a char type variable,
thus dramatically impacting the range.
An unsigned short has a maximum value
of 65,5635, whereas an unsigned char has
a maximum value of 255.

Code process review also leads to
some interesting boundaries. For exam-
ple, imagine an algorithm that takes
values A and B and multiplies them,
placing the result in a variable C:

C=A*B

The variables A, B and C are of the
type unsigned short. Each variable can
store values between 0 and 65,535.
There are many combinations of data
stored in A and B whose product would
be above the maximum value stored in
C. A serious bug could occur if an
attempt is made to overflow the vari-
able C. Such problems could result in
incorrect computations, corruptions of
memory or both.

The boundaries of interest in testing
are combinations of A and B that result
in values on the line depicted in Figure
2.1 generally do the type of “white box”
analysis required to discover processing
boundaries in collaboration with the

software development staff. I then
explore application behavior at the
memory-related processing boundaries
to make sure the application considers
the possibility that we overflow an inter-
nal boundary condition as an internal
intermediate step in processing.

Any data type has different bound-
aries, and occasional restrictions and
ranges vary across tool vendors, tech-
nologies and operating environments.
To find and test these memory and pro-
cessing variables, you’ll have to get your
hands dirty, but you’ll be helping to
ensure that the code is healthy.

These boundaries are sometimes
considered hidden since they can’t be
discovered by merely looking at the
application from the outside, studying
the requirements or exploring how
data can be input into the application
being tested.

Highlight Reel

Here, I've reviewed software bound-
aries from traditional sources based on
data requirements, input and process-
ing. Next month, in part 2, I’ll relate
further tales of exposing and discover-
ing boundary-related bugs, and share
some systematic and exploratory test-
ing techniques to unearth them. ¥

FIG.2: AN UNSIGNED (SHORT) FREE AGENT

80,000

60,000

40,000

B Values

20,000

34 e Software Test & Performance

FEBRUARY 2007

