A BZ Media Publication

Software Test g%*
& Performar

VOLUME 4 ISSUE 4 ® APRIL 2007 $8.95 «

Stress Testlng for Baundar
Limits and Tolerances

Memory Leaks in Your Java Apps?
Sun Tells How to Plug Them

Appetize Your Apps |
With a GUI Bug Hunt

Grooving With the Gremlins: N
Tips for Embracing Complexity

Software Test

& Performance YOLUME 4 o ISSUE 4 » APRIL 2007

Contemts

A BZ Media Publication

2 2 Baffled by Java

App Memory Leaks?

Is brain drain driving you batty? Let
Sun’s gurus show you how to stem the
flow—before you drown in rivers of
frozen bytecode.

By Gregg Sporar and A. Sundararajan

@ @ Learning How

To Groove With The
Gremlins

Lost your keys, got a flat tire, suffered
through an unexplained system crash?
You can’t fight entropy. Instead, learn
to embrace the inevitable: chaos and
confusion.

By Linda J. Burrs

APRIL 2007

COVIZIR STOIRY
In Search of Boundaries:
You Are Entering the No-Code Zone

In the final article in our three-part series on boundaries, you’ll learn how
to use stress tests to find behavioral boundaries, limits and tolerances.
By Rob Sabourin

;

OF
T

3 5 Bug-Hunting In

Your GUI Apps

Graphical user interfaces are the most
complex and interactive software tools
designed—so they demand a richer
testing process that will give your Ul
a workout.

By Dan Rubel and Phil Quitslund

DEpArtinemts

7 - Editorial
When it rains, it pours: a cautionary tale
about the dangers of letting leaks go.

8 : Contributors
Get to know this month’s experts and the
best practices they preach.

9 - Letters
Now it’s your turn to tell us where to go.

10 - Out of the Box

New products for developers and testers.

40 - Best Practices
A postcard from Cairo, where the grass isn’t

always greener. By Geoff Koch

42 - Future Test
Trump Homeland Security—and sort your

software threats by color! By I.B. Phoolen

www.stpmag.com ¢ 5

Contmlbutors

Dedicated to helping companies succeed at building teams
and high-quality software solutions, ROBERT SABOURIN and
his Montreal-based consultancy, Amibug.com, count among
his customers academic publisher Addison-Wesley, IT train-
ing company Logisil, McGill University and smart-card mak-
er Gemplus.

Sabourin concludes his three-part series on boundary
testing with our cover story, in which he describes how he
has applied stress testing to expose boundaries in customer
applications found when the limits and tolerances of a
system are exercised. The article begins on page 12.

A pair of development experts from Sun Microsystems
explain how memory leaks might occur in your Java appli-
cations, and share their specific tools and techniques for
finding and eliminating them.

Technical evangelist on the NetBeans project, Sun’s
GREGG SPORAR (shown) has been a software developer
for more than 20 years and has used Java since 1998. Eleven-
year veteran developer A. SUNDARARAJAN is a member
of Sun’s Java core technologies team (part of the JDK devel-
opment team). The first article in this two-part series begins
on page 22.

In “Learning to Groove With the Gremlins,” DR. LINDA J.
BURRS takes a whimsical look at the chaos that exists all
around us and offers serious advice on how to cope.
Gremlins start on page 30.

With multiple degrees in organizational leadership and
management, Dr. Burrs has spent more than 25 years bring-
ing her dynamic approach to coaching, training and team
building to corporations and professionals. Clients of her
Step Up to Success! consulting firm include law firms, tech-
nology organizations, educators, business professionals,
leadership groups and nonprofits.

DAN RUBEL (left) is chief tech-
nology officer at Instantiations,
and has been designing object-ori-
ented software since 1987. He and
PHIL QUITSLUND, architect of the
company’s Window Tester GUI test
automation tool, provide tech-
niques for GUI test mechanization
specifically for several popular
commercial and open-source tools
beginning on page 35.

Both men are considered experts in their respective fields. Rubel was instrumental
in the design and development of several successful coding products and
frameworks, and co-authored “Eclipse: Building Commercial-Quality Plug-ins” (Addison-
Wesley, 2004). Quitslund has been active in the Eclipse research community since 2002
and has built numerous tools and extensions.

TO CONTACT AN AUTHOR, please send e-mail to feedback@bzmedia.com.

APRIL 2007

Using Stress Tests to Find Behavioral
Boundaries, Limits and Tolerances

s a child, I broke a lot of toys. My parents warned me '

that if I kept doing that, I wouldn’t have much fun,
but I persisted. And guess what? My parents were wrong!

My favorite destructive experiences focused on a
model electric train set. I'd run the train and try to
see how fast it would go. I'd rearrange tracks to see
how long the train would run without jumping off.
This was great fun. I changed the train configuration—
box cars before flat cars followed by passenger cars, and
of course the caboose near the front instead of the back.
I changed the track configurations, with different long,
straight stretches followed by twists and curves with the
occasional figure eight.

I eventually had the insight to see what would hap-
pen when I changed the track layout from a two-
dimensional pattern into a system with hills and val-
leys, slopes and gradients. I also changed the
train speed: slow when it should be fast; fast
when it should be slow.

My experiments in train configuration led
to some interesting experiences. It was fun
to find out that the train would run just

fine until I crossed a threshold with one of
my variables. This occurred only in the
beginning. Then I realized that I could

have more than one train on the same
track system at the same time. I could
create dramatic situations by varying
the parameters of both trains in the
same environment to try to avoid or fi ,?:
precipitate collisions. &
I now realize that my early
experiments in determining /
the boundaries of a train sys- -
tem were the precursor to
my later hunt for bound- T‘
aries in the behavior of

Rob Sabourin is president of a
software consultancy, Amibug
.com, in Quebec.

complex software systems. ! The system being tested
Though my aim was scientific, was a centralized examina-
I used a testing approach that Time Received Processed Queued tion server used to control
ended up breaking a lot of 1 100 80 20 interactive sessions of exams
trains and track—much to my 2 200 160 40 completed by delegates as
parents’ chagrl.n.. . g 200 - 0 par.t of a professional certifi-

I find traditional domain- cation program. Several hun-
testing approaches, such as 4 400 320 80 dred concurrent users would
equivalence partitioning, use- 5 500 400 100 run exams at a predeter-
ful when finding boundaries 6 600 480 120 mined time slot from many
related to processing, computa- 7 700 560 140 geographically disparate loca-
tions, data and reporting vari- 5 500 020 160 tions. The exams were held
ables. Several techniques are in many different time zones
available to help us discover g — e Lo with overlaps between start
those factors using both analyt- 10 1,000 800 200 and finish times. Exam dura-

ic and exploratory approaches.

But I've had to apply very different test-
ing approaches to identify boundaries
related to a system’s behavior.

Software engineering projects have
many sources of bugs. For each source
we can discover different boundaries. I
use techniques associated with stress
testing experiments to help me under-
stand the boundaries of system behav-
ior. If I can identify these boundaries, I
can help my clients get a better feel for
the limitations of systems before
they’re deployed.

Stress Testing Experiments
To find the limitations of a software sys-
tem, I often use stress testing experi-

ments, which explore system behavior
by varying load and environmental con-
ditions while allowing observation of
system characteristics and parameters.

To illustrate the concept of stress
testing experiments, I'll relate a rele-
vant example from a recent project I
completed. For a critical series of test-
ing experiments to determine limita-
tions of system behavior, I studied ele-
ments of the system’s behavior while
varying the load in a controlled test
environment. I was concerned with
how the system used processing capac-
ity and available memory resources as
well as the time to complete process-
ing of typical transactions.

}

Transaction
Simulator

Transaction
Simulator

Transaction
Simulator

Data

Generator

Server

Console

14 « Software Test & Performance

Generator

[=—]
L

Generator

tion was about six hours, with
several well-defined sections with well-
known start and stop times. During the
examination, transactions were gener-
ated from delegates’ workstations,
which were PCs running Windows XP
Professional with current versions of
Internet Explorer.

A client layer was implemented
with a blend of Web-based HTTP and
JavaScript, as well as some light dynam-
ic objects. Every 15 seconds, a transac-
tion was generated from the worksta-
tion to synchronize the exam, update
questions and responses, and validate
authentication. The servers ran a tra-
ditional multi-tier Web-based architec-
ture using some operating system serv-
ices to perform continuous data repli-
cation. Data was transparently replicat-
ed. The servers were running Windows
2000 using a blend of Microsoft and
open-source Web software. Many dif-
ferent programming language envi-
ronments were used. The data layer
was implemented using a series of MS
SQL applications and stored proce-
dures. Load balancing was implement-
ed using router-based approaches.

My customer was concerned about
whether the system could handle the
amount of load over the prescribed
period of time. They had suffered
through some bad experiences in the
past owing to server failures when
roughly 20 concurrent transactions
occurred.

So I had to find the limits of the sys-
tem in place. Could it handle the load
and pattern of work expected? What
were the boundaries?

I set up a series of experiments to
identify these boundaries. Figure 1
illustrates the type of testing environ-
ment I used to find them.

The testing environment includes
three major components: a load gen-

APRIL 2007

erator, a transaction simulator and a
system console.

Load Generator

Load was generated via scripts simulat-
ing examination sessions using com-
mercial load-testing tools. Some high-
power PCs (fast CPU and plenty of
RAM) were used for the testing peri-
od, each of which could simulate
approximately 100 virtual EXAM ses-
sions (each running in a separate
thread).

Transaction Simulator

A workstation was reserved for the
purpose of simulating typical EXAM
transactions in a continuous loop as
load was generated on other comput-
ers. Commercial test-automation tools
were used to run scripts a number of
times, keeping a detailed log of all
HTTP events. Logged data used
included all load times and times to
accomplish transactions.

System Console

Microsoft Performance Monitor was
used to monitor server performance
during load generation. Sampled val-
ues included available memory and
processor usage. The Web transaction
IIS servers were configured to gener-
ate detailed logs of all HTTP events.
The results are depicted in Figures 2, 3
and 4.

In studying the transac-

18000

16000

14000

12000

10000

8000

Time

6000

4000

Transaction Time (ms)

2000

100

150 200

Load (Users)

at which the response is outside of the
requirements. The point on the curve
at which the response time changes
from constant to linear is a critical
boundary of system behavior.

Available Memory Boundary

In the same experiment, I studied avail-
able memory resources on the server as
load was varied. The boundary of mem-
ory-usage behavior change occurred at
a similar point as that associated with
transaction time. As shown in Figure 3
(see page 16), the available memory
changes from constant to an approxi-
mate linear drop after about 25 con-
current users.

Processing Capacity

I also studied the amount of available
processing capacity. I observed that
while the behavior starts to become
nonlinear after about 25 concurrent
users, the processor did not saturate
until about 80 concurrent users (see
Figure 4, page 16). In my experience,
it’s critical to know the point at which
the processor reaches saturation. If
available processing resources are
exhausted, transactions take longer to
process and will wait longer in a queue
before processing can even begin.

By performing stress testing experi-
ments, I can find boundaries in
resource usage and system behavior. I

model system usage in a
manner consistent with what

tion time while varying load,

) }) Experiment Distribution Arrival Average | CPU Capacity
I discovered an interesting Number Pattern Transactions Available
boundary. The point of the 001 Uniform Random 100 tps 90 (light)
graph at which the transac- -

. 002 Uniform Random 100 tps 60 (normal)
tion time starts increasing is

about 30 users. From one to 003 Uniform Random 100 tps 40 (heavy)
30 users, the time to com- 004 Uniform Random 200 tps 90 (light)
plete a transaction is relative- 005 Uniform Random 200 tps 60 (normal)
ly Co.nstant. After 30 users, 006 Uniform Random 200 tps 40 (heavy)
the time to process a transac-

. . . 007 Uniform Random 400 tps 90 (light)
tion increases linearly.

The client established 008 Uniform Random 400 tps 60 (normal)
thresholds of acceptable sys- 009 Uniform Random 400 tps 40 (heavy)
tem response times based on 010 Normal Random 100 tps 90 (light)
their experiences running

. . . . 011 Normal Random 100 tps 60 (normal)
such interactive examination
sessions. The acceptable 012 Normal Random 100 tps 40 (heavy)
behavior of the system was set 013 Normal Random 200 tps 90 (light)
at less than 12 seconds for 014 Normal Random 200 tps 60 (normal)
transactions to complete. This 015 Normal Random 200 tps 40 (heavy)
threshold occurred at roughly . Rand G
125 concurrent users. The 016 orma’ random 400 tps 90 (ight
point on the curve at which 017 Normal Random 400 tps 60 (normal)
the required threshold is 018 Normal Random 400 tps 40 (heavy)

passed represents a boundary

APRIL 2007

is expected on the live sys-
tem.
using stress testing experi-
ments can help minimize
risks of deploying underpow-
ered solutions. Results pro-
vide a better understanding
of how system resources are
actually used. With these
results, performance engi-

Finding boundaries

neers can tune systems for
optimal performance, and
software engineers can per-
form what-if analysis for
design

deployment alternatives.

architecture, and

Boundary Trends From
Real Usage Scenarios
Figure 5 (see page 18) repre-
sents the processor usage of a
system with a realistic simula-
tion of several hundred users
over a 24-hour period. The
experiment aimed to deter-

www.stpmag.com ¢ 15

3456

|
3454
3452 *—.V.\\\'

3450
3448 \

3446

Memory

Memory (MB)

3444

3442

3440

3438 T
0 50

100 150 200

Load (Users)

mine processing capacity. Load was
modeled with arrival times of transac-
matching
expected from the client workstations
during live operation. Past data and
log files from operational systems were
used to confirm the model’s validity.

Note that the processor usage
reached a peak value of 50 percent,
and generally falls between 30 and 40
percent. Studying processor usage
over time with a constant load helps us
identify a different type of system
usage boundary.

In this example, we see plenty of

tions those realistically

available CPU capacity that doesn’t
vary much over time. The CPU usage
“trend” boundary is at about 35 per-
cent, indicating how much of the sys-
tem will be used during live operation.
Some of my customers won’t release
systems if the processor usage exceeds
80 percent during live operation over
prolonged periods of time.

Related Rate Boundaries

By blending some analysis with stress
testing experiments, we can better
understand boundaries related to the
transaction arrival and processing
behavior of systems under test.

Often I need to find boundaries
related to processing in transactional
systems used on mainframe and multi-
tier architectures. The boundaries of
concern are related to how queues fill
up with pending transactions before
they can be processed. I create models
of how transaction events arrive and
how they are subsequently processed.

If a system can process transactions
faster than they arrive, the queue of

pending transactions will always

16 e« Software Test & Performance

remain small. If transactions arrive at a
rate faster than the system can handle
them, we have a potential problem.

Several important boundaries can
be found by looking at related rate
problems: When will the process
queue be full? When will database
cache memory be full? When will vir-
tual memory have to start using sec-
ondary storage?

Transactions arrive with a pattern
based on the type of transaction, the
timing of arrival and the distribution
of transactions. Transaction process-
ing depends on the type of transac-
tions and what else is going on in the
system while a transaction is being
processed.

I like to use the tools of differential
calculus to help me to find boundaries
related to the behavior of the arrival
and processing processes. If I can
model the arrival process as some type
of mathematical function and the pro-
cessing as another, I can find the cir-

120

cumstances in which the pending
transaction queue is full.

The Bucket of Water: Arrival

And Processing

A related rate problem would examine
the rate at which transactions go into
the queue as well as the rate at which
they go out of the queue. The queue is
like a bucket holding water. The
arrival process is like the flow of water
into the bucket. System processing is
like the flow of water out of the buck-
et. We want to find out when the buck-
et fills up as we vary the input (or
source) functions as well as the output
(or sink) functions.

Say that a(t) models the arrival
process, and b(t) models the system
processing. Then we can define the
depth of the queue as a relationship
c(t). At any time, c(t) is related to a(t)
and b(t). The rate of change of c(t) is
related to the rate of change of a(t)
and b(t). I'm interested in discovering
some characteristics of c(t). When is
c(t) at its maximum value? When is
c(t) at a threshold value? When does
the behavior of c(t) change?

Here’s a simple example. Let’s say I
have a queue that can store a maxi-
mum of 200 pending transactions, a
uniform arrival process that delivers
100 transactions per second, and a sys-
tem that can process transactions at a
rate of 80 transactions per second.

Assuming that it starts empty, when
does the queue become full? (See Table
1, page 14).

When viewed graphically as in
Figure 6 (see page 18), the queue
reaches the threshold level after 1,000
transactions have arrived and 800 have
been processed. The rate of increase

Percent

100 / —

80 / "

60 Processor
/ Utilization

40 /

20

0 T T T
0 50 100 150 200

Load (Users)

APRIL 2007

120

100

80

60

Processor Use (%)

I

40 I s ’WWMWWW
o) E—— "

-20 T

of the queue is the difference of the
rate of arrival and processing: in this
case, c(t) = a(t) — b(t).

In real systems, arrival rates aren’t
simple linear equations, and process-
ing rates depend on many factors. To
determine when the queue will fill,
you must study the relationships
between different arrival and process-
ing rates.

To find these boundaries, I set up
stress testing experiments controlling
arrival and processing rates. For each
experiment, I use one transaction-gen-
erating model and one processing
model.

For example, I could have three
possible processing models depending
on what other activities are going on
in the system: a typical model, a harsh
model and a light model. I could con-
trol access to system resources using
other programs that consume system
resources while testing takes place. I
applications
hogs.” I consume different processing
capacity for each experiment.

For the arrival process, I control the
distribution pattern and load. I conduct
a series of experiments studying trans-
action timing while load is applied with
the target pattern. An example summa-
ry of these experiments is shown in
Table 2 (see page 15).

By varying the distribution, transac-

call these “resource

tion rates and available processing
capacity, I can identify whether the
application processing can keep up
with the arrival of new transactions. I
usually study transaction processing
time, but I can also look at other
aspects of the system, especially if I
have access to performance monitor
information or database log files.
Figure 7 (see page 20) plots results
from a series of experiments in which
each curve represents a different con-
figuration and the variation in load

18 e Software Test & Performance

12 18 24

Hours

changes the number of transactions
generated per unit of time. Note that
the behavior of each curve is slightly
different, but there are two clear
trends. In A, B and C, the behavior is
consistent, and in E and F, the behav-
ior is consistent.

This tells us that there is clearly a
behavior boundary observed in exper-
iments A, B and C at a load of about 50
transactions per second. At this point,
the slope of the transaction-processing
time curve and system behavior
changes. It may be related to queues
or buffers filling, or cases in which
cache memory starts swapping to sec-
ondary storage.

Surprisingly Straightforward:
Boundaries in Quality Factors

I've found boundaries related to
almost every aspect of software testing
I've ever confronted. When the char-
acteristics of a system are hard to
quantify, boundaries are often surpris-
ingly straightforward. Methods used to
quantify quality factors are often
exposed by boundaries.

Usability. For example, how can we
quantify of usability?
Usability is the quality factor related to
the ability of users to achieve their
goals using the software being tested.
It’s challenging to write requirements
about usability, and even tougher to
confirm that your software meets
usability requirements.

In his book “Competitive Engin-
eering” (Butterworth-Heinemann,
2005), Tom Gilb teaches a powerful
approach to quantifying quality fac-
tors. The technique, which uses a tool
called Planguage, allows quality factors
to be described using attributes such
as scale, meter and goal. Scale is the unit
of measure, meter is the method of
measurement, and goal is the required
target value. By looking at quality fac-
tors from the point of view of scale,

elements

1200

1000 .

g -/./—
g / " | | ——Received
(&)

3 600 Processed
o

© / Queued
=

400
200 -7-/./

0 T T T T T

Seconds

The experiments E and F didn’t
help us identify or expose any bound-
aries of system behavior. If the experi-
ments continued at a load-transaction
rate of greater than 200 per second, I
would probably have identified a point
at which the curve slope changed.

It’s critical to note that the experi-
ment explored behavior ranges of
importance to the project. During the
range of interest there was no clear
change in slope for E and F. Stress test-
ing experiments don’t always identify
boundaries in behavior.

6

meter and goal, we can quantify the
objective and establish means of test-
ing to validate their existence or
absence in the software we’re testing.
Let’s investigate how usability can
be with Planguage.
Suppose we want to make sure the user
interface is intuitive for our target
market. Imagine a meter in which we
set up a controlled environment where
target users attempt to complete a
transaction with the software under
test. The user is given access to the sys-
tem, including online help and nor-

quantified

APRIL 2007

mal documentation. While the user
attempts to perform the task, we can
measure the number of times that doc-
umentation or online help are refer-
enced. We can set a goal of an average
of one documentation access for 10
transactions for users of the target
demographic, with suitable subject-
matter expertise and experience.

With a series of controlled experi-
ments, we can determine the trend in
the number of documentation access-
es per transaction to see if it is below
the target. Our target is on the bound-
ary. If the average is below the target,
our software is usable. If the average is
above the target, our software is not
usable. Quantifying the quality factor
of usability has enabled us to study
boundaries in usability.

Maintainability. Another challenging
quality factor is maintainability.
Software systems require maintenance.
Developers need to quickly adapt soft-
ware, add features, change system
behavior or fix bugs in an efficient man-
ner. Planguage allows us to quantify
maintainability.

For example, we could measure the
time required to fix bugs during system
testing. The meter would be the average
time to fix bugs found in system testing.
The scale would be the hours from the
time the issue was triaged to the time of
redelivery to the testing team. The goal
could be set to an average of four hours.
Now during system test, we could moni-
tor the bugfix time as a measure of our
maintainability. If it takes too long, main-
tainability is below the target threshold.
Goals in quality factors become the
upper boundary of our testing targets.

We also can examine the problem
from the opposite point of view.
Sometimes the goal is not known, and
we must reverse-engineer it. For exam-
ple, if we don’t know what the accept-
able target value is, we can set up a
series of experiments to determine
what the actual results are and then
assess whether they acceptable or not.
Once we've quantified them, we can
start setting measurable goals for
improvement. This is akin to the old
gasoline commercials that demonstrat-
ed that a car could go farther on a
tank of gasoline by using a better-qual-
ity fuel. The key then and now: A
meter existed, a scale was defined, and
experiments determined the current
value. The goal can then be estab-
lished to improve the measured value.

APRIL 2007

OUNDARIES INSPIRED BY DISASTER

RESONANT FREQUENCY BOUNDARIES AND ‘GALLOPING GERTIE’

Sometimes, perhaps too often, it takes a tragedy to open our eyes to a dangerous intersection or
stretch of road, a deadly escalator defect, or a bridge that will not withstand the forces of nature.

One such bridge was Tacoma Narrows, which famously col-
lapsed in 1940. Throughout its brief lifespan, locals came to
call it “Galloping Gertie’” because of its swaying motion
whenever the wind blew. On the morning of Nov. 7, 1940, just
four months after it was completed, the winds proved too
much for Galloping Gertie, and it swayed and twisted until it

fell apart.

What made Gertie famous was that the entire incident was captured on film by a local camera-
man (http:/www.youtube.com/watch?v=P0FilVcbpAI); the chilling images stand testament to
the need for simulation testing.

Structural engineers studied the design to determine the cause. Finally, conclusive evidence was
presented to demonstrate that the pattern of oscillation caused by the wind conditions hit the
critical point that led to the failure. The critical boundary was not the strength of the wind, but
its pattern, and the structure’s resulting oscillation. The bridge was found to have a critical res-
onant frequency, and when the load pattern matched that frequency, the bridge structure became
unstable.

In software testing, I use the notion of frequency domain boundaries to help me find system lim-
its based on the pattern and frequency of transactions, not just the number of concurrent pat-
terns. Stress testing experiments can be used to determine if system behavior is stable, given dif-
ferent distribution patterns. The load on a real system can be considered a combination of many
different component loads, each operating at a different frequency. Varying the frequency pat-
terns of the load being generated can help you understand the frequency response of the system.
I can often identify boundaries in the frequency domain, and determine if there's a critical fre-
quency in which the system behavior will change and become nonlinear.

SCALABILITY BOUNDARIES AND THE QUEBEC CITY BRIDGE
In 1907, the Quebec City Bridge collapsed during construction, taking the lives of 75 workers.
In 1916, during reconstruction of a second bridge on the site, 11 workers were killed.

In 1919, a third and successful attempt of the bridge was
opened. With a center span of 549 meters (1,800 feet), it
remains the world’s longest cantilevered bridge and is con-
sidered a major feat of engineering.

The problem with the first two attempts to build the Quebec

City Bridge was a matter of scalability. How wide a span

could be crossed with a cantilevered bridge? The bridge failed
in 1907 and 1916 because the design was being extended beyond what was physically possible.
Metal properties and construction techniques failed on wider bridges.

If there’s a message to software engineers from this, it’s to not assume that a project can han-
dle increased capacity merely by adding more hardware.

To this day, members of the Canadian Council of Professional Engineers wear an iron ring that
symbolically shares the materials of the Quebec City Bridge as a constant reminder of the social
responsibilities inherent in civil engineering. Perhaps software testers should have the same sort
of steady reminder of their responsibility to those influenced by their software.

www.stpmag.com ¢ 19

The Wal-Mart Approach
Sometimes I’'m asked to define the min-
imum system configurations recom-
mended for desktop software. As a test-
ing professional, I'd love the marketing
department to give me a specific list of
characteristics I could use to run a sim-
ple test. I'd set up a machine with the
minimal configuration and test the
application to ensure that all basic func-
tionality worked and that transaction
processing time was within rea-
sonable tolerances. Unfortun-
my marketing depart-

have
reversed the question on me.
They want to know the mini-
mum hardware requirement of
the software under test. In
essence, they’re asking me to
find the lower boundary of
acceptable systems to run the
application on.

To find this boundary, I use a

simple but effective technique
that I call the Wal-Mart
approach. I take configurations
of typical desktop systems sold
off the shelf at Wal-Mart for the
general market over the past several
years. I run a test on several sample sys-
tems to see if the application can be

ately,

ments almost always

installed and run acceptably. If an older
system fails, I try a younger one until I
get to the year in which the behavior of
the application is acceptable. The Wal-
Mart PC configuration of the year in
question becomes the resulting lower
boundary threshold.

I could have experimented with
processors, memory configurations and
storage capacities to hunt down the
optimal and minimal configurations,
but the Wal-Mart strategy is cheaper and
quicker. I also identify real systems that
consumers actually have in their homes.

Boundaries of Credihility

And Absurdity

There’s one last quality factor boundary
I want to share: credibility and absurdity.
When we test software, we usually have
insufficient time to validate many
aspects. While working with these tight
deadlines and limited resources, it’s
important to assess how reasonable and
realistic our testing is.

If we focus on absurd interactions
between systems and components, we’ll
probably expose many interesting prob-
lems, but we won’t be sure if they’ll show
up in the real world. At the same time,

20 e Software Test & Performance

we employ information about how cus-
tomers will use the software to establish
operational profiles and define usage
scenarios to help us build meaningful
test cases.

I often work with Jason DeSimone,
a contract tester who’s particularly gift-
ed in bug-confirmation testing and
respected by testing and development
teams. Having tested software since
age 15, he’s often called upon to con-

firm that bugs have really been fixed;
to confirm bugs that often he didn’t
find or identify in the first place.

I tried to understand why Jason was
so highly prized as a bug confirmation
tester. I always suspected that he
excelled because he was technically savvy
and could talk with developers about all
sorts of nitty-gritty technical issues. I was
surprised to find out that instead, the
source of Jason’s success had to do with
his notions of boundaries.

Here’s Jason’s approach to confirm-
ing fixed bugs:

1. Make sure the bug can’t be repeat-

ed as described in the bug report.

2. Identify a normal usage scenario in
which a user would have encoun-
tered the bug.

3. Confirm that on the baseline,
bugged system, the scenario would
really expose the bug.

4. Run the scenario on the fixed soft-
ware to make sure the bug isn’t
present and to validate it hasn’t just
shifted.

5. Run the scenario repeatedly with
variations, changing steps, se-
quencing, orders and values.

Jason would stop creating
scenario mutations only when
he felt that the scenario was so
absurd that he would never be
able to convince a developer
to fix a bug in it. He was iden-
tifying a subjective boundary,
but one that he and develop-
ers could easily agree upon.
He could chat with the devel-
opers to confirm that he had
crossed the line. If the bug
didn’t reappear, it was con-
firmed. If it did, he could eas-
ily convince developers that it
was important enough to fix.

To Boldly Go...

In the conclusion of this three-part
series, we’ve learned that all phases
and workflows of software engineering
are constrained by some sort of bound-
ary or limitation, and that boundary
testing is a critical part of the software
quality-assurance experience.

With boundary testing, we “boldly
go where no one has gone before”—or
perhaps more accurately, where no
application should go. As we learn the
capabilities, extremes and limits of the
software we’re testing, boundaries are
truly the final frontier!

i

50000.00
40000.00 ="
—— A
2 30000.00 - B
£ 20000.00 / e E
—¥—
10000.00 M{X F
0.00 : : :
0 50 100 150 200

Load (Transactions Per Second)

APRIL 2007

