MARCH 2007

24 e Software Test & Performance

How to Avoid Letting
The Unknown Burn
Your Sottware Projec

warnings to mariners. The Lenox
Globe from the early 1500s, the oldest
known terrestrial globe, used the Latin
phrase “HC SVNT DRACONES (hic sunt
dracones, “here are dragons”) on the east
coast of Asia. But the true dangers were
not mythical creatures, but some very real
concerns about the risks of the unknown.

In many software testing projects, I've
been challenged to discover a product’s
true boundaries. As explained in last
month’s installment, “On the Field of
Finite Boundaries,” a good many bugs
can be found at the edges of your appli-
cations. Boundaries exist in all variables
and variable combinations, which influ-

Rob Sabourin is president of software con-
sultancy Amibug.com.

MARCH 2007

important tests of the application’s behav-
ior by attempting to process values on
either side of the boundary as well as on
and around the boundary.

The Four Steps

I vary my approach to finding an appli-
cation’s boundaries depending on the
blend of the project’s technical and busi-
ness contexts.

Sometimes I have access to require-
ments; sometimes I have access to designs,
and on occasion, I can even chat with
developers. I’'ve even had the good for-
tune of accessing database schemas and
source code to help me find boundaries.

While uncovering bugs as part of the
process is certainly a useful side effect,

boundaries are:

¢ Identify the testing objective

¢ Find variables related to the testing
objective

¢ Determine which variables con-
tribute to the processing or behav-
ior of the application being tested

® Use experimentation and analysis to
isolate boundary values of con-
tributing variables

Identify Testing Objectives

When I test software, I don’t begin by
looking for boundaries. Instead, I make
sure that I’'m finding boundaries relat-
ed to a specific testing objective. A test-
ing objective could be a goal from a test
plan, confirmation of a software require-

www.stpmag.com ¢ 25

w

ment, a charter of exploratory testing, or
confirmation of a usage scenario or a sys-
tem failure mode.

Focus on one test objective at a time.
Try to identify boundaries of the appli-
cation to help fulfill the test
objective. Test objectives
concerned with software
behavior invariably involve
finding boundaries.

Find Variables

Variables in requirement-

Try to identify

aries related to some feature or charac-
teristic of the application being tested.
Discovering and identifying the vari-
ables depends on the tester’s experience,
subject-matter expertise and observation
skills. Some variables, espe-
cially data entered on
menus, dialogs and user
interface controls, are obvi-
ous. Variables related to
the system under test are
also relatively straightfor-
ward to isolate. But the elu-

based testing. Requirement- ; sive ones are those that
based test objectives can Vdrldbles thdt the influence the behavior of
be related to explicit, doc- . the system but aren’t read-
umented requirements; Veq%lrements ily visible to the tester.

implicit, undocumented ¢ Experimental ap-
requirements; product md.y no proaches can be used to

constraints; product envi-
ronments or statements of
business rules. Boundaries
can be found based on the
requirement or the imple-
mentation of the require-
ment.

Requirement-based test
objectives are used to con-
firm that the software con-
forms to the requirements.
Variables are generally the
parameters, options and
conditions that influence the application’s
behavior in fulfilling the requirement.

All variables related to the requirement
are considered. In addition, it’s critical at
times to identify variables not explicitly
mentioned in the requirement document,
but which would affect the behavior of the
software related to the requirement. For
example, a report-generation requirement
may describe the data and structure
required on a month-end report. Report
generation is also influenced by the print
er page setup, margins and paper type.
These variables influence the implemen-
tation of the capability, but aren’t explic-
itly referenced in the requirement.

Variables in exploratory testing. When
implementing exploratory testing, I gen-
erally divide the project into a series of
testing charters, each designed to con-
currently explicate and test the product.
Charters help to focus testing.

In exploratory testing, boundaries relat-
ed to the charter are discovered.
Sometimes I even define the charter of an
exploratory testing session to explicitly dis-

173| 26 » Suftware Test &ﬁﬁlénbe_ —

e gy g g, e, .

mention, but
which affect the

related software.

confirm hypotheses about
the nature of possible vari-
ables related to the testing
objective. For example,
in an insurance applica-
tion. many attributes,
including age, can define
a customer, some of them
influencing the rate
computation. Experi-
ments can be defined to
confirm the hypothesis
that age influences the
rate computation.

First, set all attributes to fixed values,
and then compute rate several times vary-
ing the age value. In each trial, vary the
age without changing other attributes. If
the rate varies, then you've confirmed the
hypothesis that age is a variable in the
rate computation. The opposite is not
true—an invariant rate tells us nothing
about the relationship between rate com-
putations and age.

The principle of concomitant varia-
tions, conceived by 19th century English
philosopher John Stuart Mill, can be used
to discover variables that relate to the test-
ing charter (see “Mill’s Methods” sidebar).

Variables in usage scenarios. When test-
ing a usage scenario, I'm concerned with
the user’s ability to perform a task using
the software. Usage scenarios are defined
in terms of the work the user must do to
perform the task—not on the capabili-

ties of the software under test.

In usage scenarios, I generally walk
through the scenario from beginning to
end, once for each possible alternate path.
For example, to test the purchase of a book

at Amazon.com, I check paths for each
alternate flow by varying the type of books
purchased and the payment terms. In the
walkthrough, I take note of every time a
user enters data or makes a choice. Each
instance noted is considered a variable,
and only those variables related to the sce-
nario qualify. If there are fields of dialogs
and menu items the user hasn’t employed
to fulfill the scenario, they aren’t consid-
ered relevant in my hunt for boundaries.

Variables in failure-mode testing. In fail-
ure-mode testing, we study the behav-
ior of the system in response to invalid
data, unexpected conditions and a
harshly constrained environment.
Variables are chosen in advance, and
testing observes and analyzes the appli-
cation’s behavior as these variables are
controlled in an invalid way. Generally,
failure-mode testing offers an indica-
tion of the robustness or fault tolerance
of the system under test. Often, the fail-
ure-mode test aims to discover at what
value a variable will cause system behav-
ior to degenerate.

Determine Contributing Variables

Variables can be classified into two broad
categories: contributing variables are
those that influence the behavior of the
application, and independent variables
are those that don’t. Although all vari-

ILL'S METHODS

From www.wikipedia.org:

“Whatever phenomenon varies in any
manner whenever another phenome-
non varies in some particular manner,
is either a cause or an effect of that
phenomenon, or is connected with it
through some fact of causation.”

If, across a range of circumstances lead-
ing to a phenomenon, some property of
the phenomenon varies in tandem with
some factor existing in the circum-
stances, the phenomenon can be attrib-
uted to that factor. For instance, sup-
pose that various samples of water, each
containing both salt and lead, were
found to be toxic. If the level of toxici-
ty varied in tandem with the level of
lead, one could attribute the toxicity to
the presence of lead.

ables influence the behavior of the soft-
ware being tested in some way, I'm con-
cerned with variables that add optimal
value to the process.

If I were testing the capabilities of a
clothes dryer, I'd identify several variables:
material type,
humidity, speed, color and the light
switch setting. To focus on the variables

temperature, weight,

more directly influencing the ability to
dry clothing, I’d probably define mate-
rial color and light switch settings as inde-
pendent variables.

I’d be tempted to consider material
type as independent as well, but I'd prob-
ably consult with subject-matter experts

processed. If the data entered is a string,
I'may try to find boundaries related to the
length of the string and the amount of
the string that’s processed.

Testing guru James Bach’s Web site,
www.satisfice.com, offers Perlclip, a won-
derful free tool that allows you to enter
a string of different lengths into the
Windows clipboard. These strings can
then be pasted into data fields of dialogs.
Perlclip lets you create counterstrings of dif-
ferent lengths. If an application truncates
a counterstring, you can easily determine
the number of characters processed, and
thus identify a boundary.

Table 1 illustrates how a binary search

approach has some risks, since you may
not converge on all of the boundaries.

To identify boundaries based on
applied differential calculus, you can try
some other analytic techniques that can
be useful when the application computes
different values in a continuous range. I
urge you to study Runge-Kutta, Newton
and Newton-Raphson numerical meth-
ods to identify boundaries of continuous
functions. Detailed descriptions of these
approaches can be found at
www.wikipedia.com.

When you’re identifying boundaries,
the application’s behavior may vary
depending on the order or progression

first. A textile specialist could help me
better understand the relationship among

TABLE 1: BLACKBEARD’S BLACK BOX

ﬁ?— -.'I;_E'F __-F =
'-'1-—-|.|—|-l1| -

materials, temperature and humidity in
the drying process. Variables of temper- STEP MIN MAX NEW Result Comment
ature, weight, humidity and speed would L 0 0 Low Tax Rate
] ght, K ty p 1 0 1,000,000 50 High Tax Rate
certainly be contributing variables. 2 0 1,000,0000 500,000 50 High Tax Rate
3 0 500,000 250,000 50 High Tax Rate
indi i 4 0 250,000 125,000 50 High Tax Rate
Inding boundaries
s . . 5 0 125,000 62,500 25 Vledium Tax Rate
Now that we’ve identified the relevant 6 62,500 125,000 93,750 25 Medium Tax Rate
y g ’
variables, it’s time to roll up our sleeves 7 93,750 125,000 109,375 50 High Tax Rate
and discover the boundaries. I've used 8 93,750 109,375 101,562.5 50 High Tax Rate
many diferent approches, but Ive 20 | o [s e | e
. 4 g)
found that the most effective are black-, 11 99,609 101,562 100,585.5 50 High Tax Rate
white- and gray-box testing. 12 99,609 100,585 100,097 50 High Tax Rate
Black-box testing is testing an applica- 13 99,609 100,097 99,853 25 Medium Tax Rate
. ’ 14 99,853 100,097 99,975 25 Medium Tax Rate
tion from the outside. We generally lack o oI 0,00 0BG =0 High Tax Rate
. . . L A L
specific knowledge of the design or imple- 16 99,975 100,036 100,005.5 50 High Tax Rate
mentation of the software. We control the 17 99,975 100,005 99,990 25 Medium Tax Rate
application by varying the environment 18 99,990 100,005 99,997.5 25 r\/l.edlum Tax Rate
.) 19 99,997 100,005 100,001 50 High Tax Rate
and controlling external parameters. And 20 99,997 100,001 99,999 25 Medium Tax Rate
we assess correctness by observing the 21 99,999 100,001 100,000 50 High Tax Rate/
Med.Tax Rate Boundary
results, outputs and outcomes of the pro-

cessing done by the application.

Very often, black-box approaches are
the only ones readily available to testers
and should be considered key skills. If I
have requirement documents available,
I research the possible ranges of values
for business logic or data processing.
Each range of values defines boundaries.
I then confirm that these boundaries
really existed in the application by try-
ing values above, below and immediate-
ly on each value.

Next, I make sure that I confirm pro-
cessing; that persistent stored data and
reports are consistent for each variable.
In my experience, boundary bugs are
often due to inconsistent development
or design for different aspects of the
application related to the variable.

To explore for boundaries of a vari-
able, I often try to vary data entered or

e, L

can be used to identify boundaries of a
variable. The software being investigated
computes the tax rate based on income
level; different tax rates are used for dif-
ferent ranges of income. The system pre-
cision is assumed to be in units of $1.00.

Boundaries of numeric variables can
be determined in many ways. For exam-
ple, a binary search can be useful. Start
by choosing two possible values: MIN
and MAX. If the behavior observed is
different at MIN and MAX, identify a
NEW value that is halfway between.

If behavior at NEW is the same as MIN,
replace MIN with the NEW value. If behav-
ior at NEW is the same as MAX, replace
MAX with the NEW value. Continue this
process until the difference between MIN
and MAX is within the precision of the
variable being explored. Caveat: This

- g

of values tested. The application may have
a bug in which memory is accidentally
overwritten by data. I've tried to find
boundaries by approaching them from
large to small, or independently from
small to large. In a number line, this
would be considered approaching the
value from the left or right. The appli-
cation’s behavior may be different
depending on the approach.

It’s also important to make sure each
trial of the application begins at a con-
trolled starting point, since the applica-
tion’s behavior varies based on the
sequence of events, not just the specific val-
ues used in testing. I've occasionally had to
restart from scratch each trial to help iso-
late a buffer overflow-related boundary.

It’s possible to simulate changes to

environment variables, such as the

amount of free disk space, memory or net-
work resources. There are several com-
mercial tools that allow you to simulate
varying many system parameters without
modifying the actual operating environ-
ment.

White-box testing is based on studying
the detailed design, code and data struc-
tures used to implement the application.
When I have access to such information,
I use it to complement black-box
approaches. I never rely exclusively on
white-box approaches since they’re based
on the code and tend to confirm that the
code does only what it says it does. I pre-
fer to confirm that the code does whatit’s
expecled or required to do.

I use three approaches to
white-box testing to help iden-
tify boundaries: structured walk-
throughs, static analysis and
data-flow analysis.

In the structured walkthrough, 1
ask the developer to walk
through and explain to me all of
the code used to implement the
part of the application I'm test-
ing. I focus on how data is
processed and stored in memo-
ry. I don’t generally follow all of
the paths through the code.
Instead, I walk through the nor-
mal cases and exceptional paths
that commonly occur.

Whenever I identify processing or
storage of data, I take note of the types
of data and valid ranges. Decisions and
case statements in the code are indica-
tors of potential boundaries. Confirm
boundaries found in the code by exper-
imenting with a running application
after the walkthrough. Look at database
schemas to understand the types and
relationships among records kept in per-
sistent storage. Ranges, rules and trig-
gers associated with elements of the data-
base are all potential boundary condi-
tions. Experiment with the running
application to explore behavior around
these boundaries.

In my white-box toolkit, I also use stat-
ic analysis tools to help identify poten-
tial boundary conditions in code. A stat-
ic analysis tool helps identify type casting,
the cases in which the data type is
changed at runtime by storing data of one
type in another. For example, an integer
is commonly cast into a character variable
or a byte variable. Casting exposes poten-

tial boundary conditions related to the
ranges of values.

I also identify boundaries related to
the size of buffers used in memory to
process data. Buffer sizes may be com-
puted dynamically or assigned statically.
Studying buffers in code helps identify
potential boundaries.

The third white-box testing approach
Luse is data-flow analysis. In this approach,
you examine all the places that variables
are created, modified or destroyed. Each
point where a data element is processed
may expose a potential boundary.

Gray-box testing is a combination of
black- and white-box approaches. In this
method, I study the design to understand

In white-box testing, studying
buffers in code can belp to
identify potential boundaries.

how data is processed and stored. Based
on understanding the algorithms and data
structures used, I identify potential bound-
aries. I then explore the behavior of the
application around these boundaries.

I use interviews with developers, archi-
tects and technical analysts to understand
how multiple variables can combine to
influence the behavior of the application
being tested. Boundaries may depend on
the relationship between variables as well
as the specific values of each variable.

For example, consider the task of com-
puting valid postal rates in Canada. The
rate depends on the height, width and
length of a package on an individual basis
(for example, a maximum and minimum
boundary for each), but the validation
depends on the sum of all three values.
If the sum of height, width and length
exceeds some value, the postal rate com-
putation changes.

Algorithms used to solve complex
problems using numeric methods often
have values that lead to unstable com-
putations. Take, for example, a result that

i—-

g

o

¥

= :,—q.'

i

AN O ek !
o vl

—ii
By gy gt

= o s
-i;.'-l K ‘.f' -_-;'114'

ends up with values that are divided by
zero. Dividing by zero leads to an invalid
number. Any number divided by zero that
isn’t represented by floating-point num-
bers in a digital computer is said to be
infinite. By studying the numeric meth-
ods used in computation, we can also
identify boundaries.

A computational boundary, therefore, is
a value or combination of values that lead
to unstable computations.

Any Means Justify the End

Different techniques can be used to iden-

tify boundaries in a software system. The

critical task is to identify which variables

influence the behavior of the application
being tested. Once this is done,
you can determine how they con-
tribute to the processing of the
application related to the test
objective. For each contributing
variable, different black-, white-
or gray-box approaches can be
used to explore boundaries and
study the application’s behavior
as variables or combinations of
variables approach their bound-
ary conditions.

Next month, the concluding
article in this series will investi-
gate boundaries related to the
behavior of the system and

aspects of quality factors, as well as the
limits of system behavior under load and
in harshly constrained environments. I'll
also examine boundaries of load, per-
formance, capacity, environment and
stress. Finally, I'll share some techniques
to identify risks associated with multiple
boundaries and experiments that push
code to the limits. [

X,
e :
i =

o T

=L

w-ﬂ._._#—;-—:.!if..’qiﬁ;ﬂ it e

